Atrial Fibrillation in the Emergency Department
Disclosures

• Edward Jauch, MD MS

• Research support
 – National Institutes of Health funding (multiple trials)
 – Novo Nordisk (drug in kind) STOP-IT Study
 – Genentech (drug in kind) PRISMS Study
 – Cleveland Clinic (lab in kind) Genomics Study

• None related to this subject
Disclosures

• Brett Cucchiara, MD
• Research Support
 – National Institutes of Health (multiple trials)
 – Bristol Myers Squibb
• None related to this subject
Webinar Overview

• Review epidemiology of atrial fibrillation
• Review existing guidelines for overall management
• Discuss risk assessment tools
 – Future cardioembolic risks
 – Treatment risk assessment
• Integration of management with primary care
Outline

• Epidemiology
• Signs and Symptoms
• Management
Epidemiology

• Most frequently diagnosed arrhythmia
• Affects 2.7 million people in the US with 12 million by 2050
• Incidence increases with age
 – 4% over age of 60 years
 – 8% over age of 80 years
Prevalence of Atrial Fibrillation

Epidemiology

• Atrial fibrillation carries risk
 – 1.5-1.9 higher risk of death
 – Thromboembolic events primary risk (5x stroke risk)
 – Associated with worse New York Heart Association Heart Failure classification

(CDC Fact Sheet, 2010)
Atrial Fibrillation Hospitalization 2000-2006
Classification

- Paroxysmal Lasts < 7 days
- Persistent Duration exceeds 7 days
- Permanent Persists > 1 year

Diagram:
- First diagnosis of AF
 - Paroxysmal
 - Persistent
 - Permanent
 - Paroxysmal
 - Persistent
 - Permanent
Prevalence of Afib and Anticoagulation in the Emergency Department

- Prevalence in ED population of 1.10%
- 64% with prior afib history
 - 40% on warfarin (61% out of range)
 - 28% antiplatelet therapy
 - 5% warfarin and antiplatelet
 - 27% none (24% eligible)

(Scott. Stroke. 2002;33:2664-2669)
Patients with Afib in the ED

• 3 year period in province of Ontario
• 12,772 index ED visits (discharged home)
 – Repeat visits within 14 days (10.3%)
 • 0.7% mortality
 • 67.6% no followup / 19.4% PCP / 12.8% “specialist”
 • “Specialist” followup HR 0.61 (p=0.003)
 – 90 day mortality 3.3%
 • Filled warfarin rx HR 0.70

Signs and Symptoms

- Irregular or rapid heartbeat
- Palpitations
- Lightheadedness
- Extreme fatigue
- Shortness of breath
- Chest pain

- Asymptomatic

(CDC Fact Sheet, 2010)
Risk Factors

- Hemodynamic stress (valve disease, LV dysfn)
- Atrial ischemia
- Inflammation (myocarditis, pericarditis)
- Noncardiovascular respiratory causes
- Alcohol and drug use
- Endocrine disorders (hyperthyroidism, diabetes)
- Genetic factors
- Advancing age
Management

- Rate control
- Rhythm control
- Anticoagulation
- Unstable patients - Cardiovert
- Referral

(CDC Fact Sheet, 2010)
Rate Control

• Why is rate control important?
 – Ischemia, MI, hypotension can occur
 – Long term: Cardiomyopathy
• Goals
 – Rest HR < 80 bpm
 – 24° monitor < 100 bpm average
 – HR < 110 in 6 minute walk
Rhythm Control

• Indications
 – Symptoms of persistent atrial fibrillation
 – To avoid long term anticoagulation
 – Excessive bleeding risk
 – Personal preference
Anticoagulation

- Critical for moderate to high risk patients
- Multiple options now available
- Tailor to patient characteristics, risk of stroke, risk of bleeding, etc
CHADS\textsubscript{2} Scoring

<table>
<thead>
<tr>
<th>Item</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure history?</td>
<td>1</td>
</tr>
<tr>
<td>Hypertension history?</td>
<td>1</td>
</tr>
<tr>
<td>Age > 75 years?</td>
<td>1</td>
</tr>
<tr>
<td>Diabetes mellitus history?</td>
<td>1</td>
</tr>
<tr>
<td>Stroke symptoms or TIA or thromboembolism?</td>
<td>2</td>
</tr>
<tr>
<td>Patient has none of the above</td>
<td>No risk</td>
</tr>
</tbody>
</table>

(Singer DE. *Chest*. 2008 Jun;133(6 Suppl):546S-592S)
CHADS\textsubscript{2} Scoring

<table>
<thead>
<tr>
<th>CHADS\textsubscript{2} Score</th>
<th>Stroke Risk (%/yr)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.9</td>
<td>1.2-3.0</td>
</tr>
<tr>
<td>1</td>
<td>2.8</td>
<td>2.0-3.8</td>
</tr>
<tr>
<td>2</td>
<td>4.0</td>
<td>3.1-5.1</td>
</tr>
<tr>
<td>3</td>
<td>5.9</td>
<td>4.6-7.3</td>
</tr>
<tr>
<td>4</td>
<td>8.5</td>
<td>6.3-11.1</td>
</tr>
<tr>
<td>5</td>
<td>12.5</td>
<td>8.2-17.5</td>
</tr>
<tr>
<td>6</td>
<td>18.2</td>
<td>10.5-27.4</td>
</tr>
</tbody>
</table>

(Singer DE. *Chest.* 2008 Jun;133(6 Suppl):546S-592S)
CHADS₂ Score Utilization

<table>
<thead>
<tr>
<th>CHADS<sub>2</sub> Score</th>
<th>Stroke Risk</th>
<th>Consideration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Low</td>
<td>No treatment (or aspirin 75-325 mg / day)</td>
</tr>
<tr>
<td>1</td>
<td>Moderate</td>
<td>Oral anticoagulation Warfarin with INR 2-3 or new oral anticoagulant (or aspirin 75-325 mg / day)</td>
</tr>
<tr>
<td>2 or higher</td>
<td>Moderate to High</td>
<td>Oral anticoagulation Warfarin with INR 2-3 or new oral anticoagulant</td>
</tr>
</tbody>
</table>

(Singer DE. *Chest*. 2008 Jun;133(6 Suppl):546S-592S)
Low Risk CHADS$_2$ Scores

Kaplan-Meier estimate of probability of remaining free of thromboembolism with CHADS2 score 0 and 1. Only patients with CHADS2 scores 0 and 1 were included.

(Olesen. BMJ. 2011:342:d124)
CHA$_2$DS$_2$VASc Scoring

<table>
<thead>
<tr>
<th>Item</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure history?</td>
<td>1</td>
</tr>
<tr>
<td>Hypertension history?</td>
<td>1</td>
</tr>
<tr>
<td>Age 65 - 75 years?</td>
<td>1</td>
</tr>
<tr>
<td>Age >75 years</td>
<td>2</td>
</tr>
<tr>
<td>Stroke symptoms or TIA or thromboembolism?</td>
<td>2</td>
</tr>
<tr>
<td>Diabetes mellitus history?</td>
<td>1</td>
</tr>
<tr>
<td>Vascular disease</td>
<td>1</td>
</tr>
<tr>
<td>Female sex</td>
<td>1</td>
</tr>
</tbody>
</table>

More sensitive and places $\sim30\%$ of those in CHADS$_2$ 0-1 into higher score where anticoagulation is recommended.

(Lip GY. *Stroke*. 2010;41:2731-8)
CHA$_2$DS$_2$-Vasc Score

<table>
<thead>
<tr>
<th>CHA$_2$DS$_2$-Vasc Score</th>
<th>Annual Stroke Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>~0%</td>
</tr>
<tr>
<td>1</td>
<td>1.3%</td>
</tr>
<tr>
<td>2</td>
<td>2.2%</td>
</tr>
<tr>
<td>3</td>
<td>3.2%</td>
</tr>
<tr>
<td>4</td>
<td>4.0%</td>
</tr>
<tr>
<td>5</td>
<td>6.7%</td>
</tr>
<tr>
<td>6</td>
<td>9.8%</td>
</tr>
<tr>
<td>7</td>
<td>9.6%</td>
</tr>
<tr>
<td>8</td>
<td>6.7%</td>
</tr>
<tr>
<td>9</td>
<td>15.2%</td>
</tr>
</tbody>
</table>
Stroke Prevention in AFib

• Currently approved medications are oral anticoagulants (vitamin K antagonists such as warfarin) and aspirin\(^1\)

• Vitamin K antagonists are effective in preventing stroke among AFib patients with a 68% relative reduction versus placebo

(SPAF Trial. *Arch Intern Med* 1994;154:1449-1457)
Limitations of Vitamin K Antagonists

• Narrow therapeutic window
• Wide variation in metabolism, with numerous food and drug interactions
• Need for regular coagulation monitoring and dose adjustment
• Slow onset/offset
Warfarin for Atrial Fibrillation

Anticoagulation in Patients with AFib in PC Practice

- No Warfarin: 65%
- INR Above Target: 6%
- INR in Target Range: 15%
- Subtherapeutic INR: 13%

New Antithrombotic Agents

- Tissue Factor
- Plasma Clotting Cascade
- Prothrombin
- Thrombin
- Fibrinogen
- Fibrin
- Thrombus
- Collagen
- ADP
- Thromboxane A₂
- Conformational Activation of GPIIb/IIa
- Platelet Aggregation

- Aspirin
- Clopidogrel
- Prasugrel
- AZD6140

- Apixaban
- Rivaroxaban
- Idraparinux
- AT
- Dabigatran
- Ximelagatran
- Robert Wood Johnson Foundation
- The George Washington University
- School of Public Health and Health Services
Considerations with New Agents

• New oral anticoagulants (NOAc): dabigatran, rivaroxaban, and apixaban
• There are no published data directly comparing NOAc to each other, just to warfarin
• The follow-up duration in NOAc is limited in clinical trials and real-world adherence is unknown
• Because of the short half-life, missing NOAc medication doses may increase risk of stroke
• Treatment decisions should account for cost differences to patients
Considerations with New Agents

- Data on clinical effectiveness for dabigatran in the real world are just beginning to emerge; data on apixiban and rivaroxaban are unavailable.
- A transition from warfarin to NOAc should be managed carefully; this period may constitute increased risk of stroke or hemorrhage.
- Safety of thrombolytic use in patients with ischemic stroke on NOAc is unknown.
- There are no antidotes to emergently reverse NOAc during hemorrhage.
OAC Associated Bleeding Risk Factors

- **Patient-related factors**
 - Age
 - History of bleeding
 - Previous stroke
 - Anemia
 - Genetic factors
 - Sex
 - Uncontrolled hypertension
 - Renal insufficiency
 - Hepatic dysfunction
 - Malignancy

- **OAC treatment-related factors**
 - Inception vs OAC experience
 - Adherence
 - Intensity of anticoagulation (INR)*
 - Time in therapeutic range*
 - Dietary intake of vitamin K*
 - Management of OAC (self-monitoring, dedicated OAC clinic, usual care)*
 - Concomitant medications/alcohol
 - Antiplatelet drugs / NSAIDs
 - Other medications affecting OAC intensity
 - Excessive alcohol intake

*Vitamin K antagonist therapy only

(Lane, *Circulation*. 2012;126:860-865)
Risk with Warfarin Anticoagulation

(Oden A. Thromb Res. 2006;117:493-9)
Bleeding Risk – HAS BLED

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension (SBP > 160 mm Hg)</td>
<td>1</td>
</tr>
<tr>
<td>Abnormal renal function</td>
<td>1</td>
</tr>
<tr>
<td>Abnormal liver function</td>
<td>1</td>
</tr>
<tr>
<td>Stroke</td>
<td>1</td>
</tr>
<tr>
<td>Bleeding predisposition</td>
<td>1</td>
</tr>
<tr>
<td>Labile INRs (if on warfarin)</td>
<td>1</td>
</tr>
<tr>
<td>Elderly (> 65 yrs)</td>
<td>1</td>
</tr>
<tr>
<td>Drug use</td>
<td>1</td>
</tr>
<tr>
<td>Alcohol use</td>
<td>1</td>
</tr>
</tbody>
</table>

(Pisters R. Chest. 2010;138:1093-100)

HAS-BLED Score

≥ 3 indicates caution is warranted
Current Treatment Options

- Adjusted-dose warfarin (target INR, 2.0 –3.0) is recommended for all patients with nonvalvular atrial fibrillation deemed high risk or moderate risk for stroke who can receive it safely (Class I; LOE A).

- Antiplatelet therapy with aspirin is recommended for low-risk and some moderate-risk patients with atrial fibrillation on the basis of patient preference, estimated bleeding risk if anticoagulated, and access to high-quality anticoagulation monitoring (Class I; LOE A).

- For high-risk patients with atrial fibrillation deemed unsuitable for anticoagulation, dual-antiplatelet therapy with clopidogrel and aspirin offers more protection against stroke than aspirin alone but with an increased risk of major bleeding and might not be reasonable (Class IIb; LOE B).

New Anticoagulants

• Short half life – less bleeding
 – Subtherapeutic after missing one or two doses
• Lack of need for routine monitoring
 – No standard test to assess degree of anticoagulation
• Generally safer than warfarin
 – No antidote
• Cost of medication
 – Overall cost of care
Conclusions

• Atrial fibrillation is coming
• Many present to the ED with their index event
• Treatment options continue to expand
• Key to successful prevention
 – Identification
 – Initiation
 – Consultation and referral
ASPRIRIN

- CHADS2=0 or 1
- 81 mg to 325mg PO daily
- Lower risk for bleeding than warfarin
- No need to check INRs etc
- Lower risk of major bleeds in patients who are a fall risk
• For CHADS2 score 2 or greater and also 1 depending on patient and physician preference

• Goal INR= 2 to 3

• Must monitor INRs regularly

• Can be dangerous if fall risk or bleeding risk high
• If not a candidate for warfarin; this can reduce stroke risk greater than ASA alone
• Risk for major bleeding increased
- Direct Thrombin Inhibitor
- Alternative to warfarin for CHADS2=1 or greater in those without valvular afib
- RE-LY Trial showed superior to warfarin in preventing ischemic and hemorrhagic CVAs with reduced risk of life threatening bleeding but higher risk of GI bleeds
- No lab monitoring*
- No reversal agent available for major bleeding events
• Oral factor Xa inhibitor
• Seems to be equivalent in efficacy to warfarin for CVA prevention and no difference in major bleeding events
• Demonstrates a reduction in intracranial hemorrhage
• Note: risk of thrombotic events increased for 28 days after stopping drug so may need to bridge with another anticoagulant during this time.
• AFIB: very common arrhythmia and leading cause of embolic CVAs
• Initial Workup: H and P, trop, EKG, TSH, Echo, CXR, CMP
• Management: First must determine if stable vs unstable (medically manage vs cardiovert immediately)
• For stable Afib: rate vs rhythm control (equal in efficacy). Start with rate control and if that fails try rhythm.
• Always remember to calculate CHADS2 score and anticoagulate for CVA ppx.
Rate Control (con’t)

• Medications
 – Metoprolol / Esmolol: IV or Oral
 – Diltiazem: IV or Oral
 – Verapamil: Oral Only
 – Digoxin: Patients with hypotension
 – Amiodarone: Also for rhythm control
Rhythm Control (con’t)

- Synchronized DC cardioversion
 - Emergencies/Hemodynamic instability
 - Greater efficacy than medications

- Pharmacologic cardioversion
 - If AF < 7 days – dofetilide, flecainide, ibutilide, propaferone or amiodarone
 - If AF > 7 day – dofetilide or amiodarone
Rate or Rhythm Control?

• Affirm Study: Rate versus rhythm control
 – No difference in incidence of stroke
 – Trend towards lower mortality in the rate control group
 – See article

 – This is STILL a controversial topic!
Anticoagulation and Cardioversion

- **Afib < 48 hours**:
 - Cardioversion (CV)
 - No anticoagulation indicated

- **Afib > 48 hours**:
 - Anticoagulate for 3-4 weeks before CV
 - OR get TEE
 - Anticoagulate for 1 month after CV
Key Points

- MI is a rare CAUSE of a-fib
- Rate control must be achieved during exercise, not just at rest
- Not every patient needs to bridge with heparin
- Unstable patients should immediately be cardioverted
Differential Diagnosis

- Narrow Complex Tachycardias
 - Atrial Fibrillation
 - Atrial Flutter
 - AVNRT
 - AVRT
 - Atrial tachycardia
 - Sinus tachycardia
 - Multifocal atrial tachycardia

SVT is a category, not a diagnosis!
Diagnostic Testing: TTE

- To assess for structural heart disease
 - EF
 - Wall motion
 - Dilation/Hypertrophy
 - Size of right and left atrium
 - Valvular disease
 - Pericardial disease
Chest X-Ray

- Look for emphasisema/COPD
- Cardiac borders
- Pneumonia
Key features of new oral anticoagulants

Dabigatran etexilate
- Oral direct thrombin inhibitors
- Prodrug rapid biotransformation to active drug
- Inhibit free and fibrin-bound FIIa activity
- Fixed dosing - no coagulation monitoring required
- Max inhibition of FIIa after 1–4 h
- $T_{1/2}$: dabigatran, 12–17 h
- Few food/drug interactions
- Renal excretion: 80%

Apixaban and Rivaroxaban
- Oral direct FXa inhibitors
- Directly acting compound – no biotransformation
- Inhibit free and fibrin-bound FXa activity, and prothrombinase
- Fixed dosing - no coagulation monitoring required
- Max inhibition of FXa after 1–4 h
- $T_{1/2}$: apixaban 12 h; rivaroxaban 6–9 h
- Few food/drug interactions
- Renal excretion: 25%, 66% resp.

Phase III AF trials:
- Dabigatran etexilate: RE-LY
- Apixaban: ARISTOTLE, AVERROES
- Rivaroxaban: ROCKET

Phase II ACS trials:
- Dabigatran: RE-DEEM
- Apixaban: APPRAISE
- Rivaroxaban: ATLAS
Scoring Differences Between CHADS₂ and CHA₂DS₂-VASc

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>CHADS₂</th>
<th>CHA₂DS₂-VASc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Points</td>
<td>Points</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Vascular disease</td>
<td>N/A</td>
<td>1</td>
</tr>
<tr>
<td>Age 65-74</td>
<td>N/A</td>
<td>1</td>
</tr>
<tr>
<td>Age ≥75</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Female sex</td>
<td>N/A</td>
<td>1</td>
</tr>
<tr>
<td>Previous stroke/TIA</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

N/A – not applicable
Thank You for Participating!

Following the webinar, Urgent Matters will be sending an email that will include an evaluation of the webinar. Once you have completed the online evaluation you will be automatically directed to a website containing instructions for receiving CME credits. The page will include a link that will allow you to complete and submit the claim form online.

For Physicians
The George Washington University School of Medicine and Health Sciences is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

The George Washington University School of Medicine and Health Sciences designates this live activity for a maximum of 1 AMA Physician Recognition Award Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

For All Other Health Care Participants
A record of attendance (certificate) will be provided to all other health care professionals for requesting credits in accordance with state boards, specialty societies, or other professional associations.

Can I Access this Webinar at a Later Date?
Yes, a recording of this webinar will be posted on the Urgent Matters website at www.urgentmatters.org along with the PowerPoint presentation.

How can I learn more about Urgent Matters?
The best way to learn about Urgent Matters events is to sign up for our E-newsletter.

Follow us on social media & iTunes!

If you have any additional questions about the webinar or Urgent Matters please email us at info@urgentmatters.org