Pressure Controlled Modes of Mechanical Ventilation

> Christopher Junker Department of Anesthesiology & Critical Care Medicine George Washington University Saturday, August 20, 2011

FIGURE 1. Top: High-pressure/high/volume. Center: Negative-pressure/ high volume (iron lung). Bottom: High-pressure/low volume.

CAL CARE MEDICINE GWUMC

Assist Control Hypoxemic Options

- Oxygenation proportional to mean alveolar pressure
- Increase Tidal Volume
- Increase PEEP
- Rapid Acceleration of Flow
 - Pressure augmentation
- Inspiratory Pause

PRVC

•PRVC

 Decelerating inspiratory flow pattern (square wave pressure build up)
Pressure automatically adjusted according respiratory mechanics to deliver set tidal volume

PRVC Automatically Adjusts To Compliance Changes

Initial Settings on PRVC Tidal Volume 8cc/kg and titrate down **Resp Rate estimated from minute ventilation** previous setting or spontaneous rate pre-intubation Pressure limit 40 Inspiratory time 1 sec contingent on rate PEEP as appropriate, probably not less than 10 if oxygenation difficult

Pressure Control

- FiO2
- Inspiratory time
- Resp Rate
- Inspiratory Pressure (pressure over PEEP)
- Rate of Pressure Rise
- PEEP

Pressure Curves Comparison

Figure 1. Typical Pressure and Flow Curves (Volume Ventilation)

Principles and practice of mechanical ventilation, 2006, Martin Tobin

Paw airway aw PA alveolus A and Flow in PCV

Pressure Control w/ Obstructive

Principles and practice of mechanical ventilation, 2006, Martin Tobin

Initial Settings on Pressure Control

- Inspiratory time 1 second
- Resp Rate as with PRVC
- Inspiratory Pressure (pressure over PEEP) start at 30 and wean down to decrease TV as tolerated.
- Rate of Pressure Rise
- PEEP 10 and observe

Pressure Control Inverse Ratio

Principles and practice of mechanical ventilation, 2006, Martin Tobin

Airway Pressure Release Ventilation

- FiO2
- Pressure High (CPAP)
- Time High
- Pressure low (PEEP)
- Time Low

APRV

Principles and practice of mechanical ventilation, 2006, Martin Tobin

Initial Settings on APRV

- Time High 2-6 seconds depending on CO2 production
- Pressure High 2/3 pressure of volume cycled requirement so about 20 30
- Time Low (PEEP) 0.5 seconds
- Pressure Low (PEEP) 0-5 titrate so it terminates in 75-25% PEF zone

		<u>T High (s)</u>	T low (s)	Freq.
<u>P/F</u>	<u>MAP</u>			
<250	15-20	3.0	0.5	17
<200	20-25	4.0	0.5	13
<150	25-28	5.0	0.5	11
		6.0	0.5	9

Expiratory Flow

BiVent

- FiO2
- Pressure High (CPAP)
- Time High
- Pressure low (PEEP)
- Time Low
- Pressure Support over High
- Pressure Support over PEEP

Spontaneous Breathing w/PS

Initial Settings on BiLevel

- Time High 2-6 seconds depending on CO2 production
- Pressure High 2/3 pressure of volume cycled requirement so about 20 30
- Time Low (PEEP) 0.5 seconds
- Pressure Low (PEEP) 0-5 titrate so it terminates in 75-25% PEF zone
- Pressure over High 5-10
- Pressure over PEEP 5-10

Bi-Vent Settings

		<u>T High (s)</u>	T low (s)	Freq.
<u>P/F</u>	<u>MAP</u>			
<250	15-20	3.0	0.5	17
<200	20-25	4.0	0.5	13
<150	25-28	5.0	0.5	11
		6.0	0.5	9

To Decrease PaCO₂:

• Decrease T High.

- Shorter T High means more release/min. i.e. increased RR
- No shorter than 3 seconds (this just becomes inverse ratio pressure control
- Increase P High to increase ΔP and volume exchange. (2-3 cm H₂O/change)
 - Monitor Vt
 - PIP (best below 30 cm H₂O)
- Check T low. If possible increase T low to allow more time for exhalation.

Management of PaO₂

To Increase PaO₂

- 1. Increase F_1O_2
- 2. Increase MAP by increasing P High in 2 cm H_2O increments.
- 3. Increase T high slowly (0.5 sec/change)
- 4. Recruitment Maneuvers
- 5. Shorten T PEEP (T low) to increase PEEPi in 0.1 sec. increments (This may reduce V_T and affect PaCO₂)

Weaning Bi-Vent

Weaning Bi-Vent

÷.	Mode			Admit		Statu	IS
<u> </u>	Bi-Ven	it		patient		<u>۲</u>	
						04-22 1	11:15
		Set Ven	tilation Mode			Ppeak (cmH	20)
	Bi-Ve	nt 👻	Bi-Vent R Bi-Vent I:I	R 8 b/min ← E 23.3:1	•Lower R	ate <mark>22</mark>	40
	Basic	Insp. times	Triç	gger S	upported breath	(cmH₂0)	21
	P high	T high	Trigg. Flo	pw I	PS above P high	PEEP (cmH₂O)	6
0	ZU сmH₂0 ⁵⁰	7.U 0.2 s 10.0	-20		8 cmH₂O ¹²⁰	RR (b/min)	30
	DEED				DS about DEED	7	5
		N	insp. c			O ₂ (%)	
0	CmH₂O 50	0.2 U.3 10.0	1	4 0 0	CmH₂O 120	50	65
	O ₂ conc.	T insp. rise			/	Ti/Ttot	55
21	6U	U. IU			/	MUs (Ilwis)	
						40.0	
						۲ Ζ.	2.0
Increase PS						VTi (mD	216
\•Lower P High				VTe (ml)	214		
			Car	icel	Accept	Additio value	inal
						Value	

- Pressure controlled modes can deliver TV and MV equal to VC with lower peak pressures
- Play with the vents
- Pressure control is a perfectly good form of ventilation even in normal lungs
- All of these modes have increased mean alveolar pressure and potential for hypercarbia

MEDICINE GWUMC