Objectives

• Why is research important?
• Why should I do research?
• What are my research opportunities?
• Medical database research
• Questions and pitfalls of database research
Importance of Research

• Advancement of Medical Care
 – Contribution to your specific field
 – Improvement of patient care
 – Involves the core purpose of being a physician

– Contributions:
 • Diagnostic
 • Therapeutic
 • Invasive or Non-Invasive
 • MAY TAKE DECADES OR CENTURIES – CUMULATIVE
History of Wound Infections

- Edwin Smith Papyrus
 - Ancient Egypt (c 1600 BC)
 - Oldest known treatise
 - Scientific (not magic)
 - Trauma & Surgery
 - Wound Care
 - Thebes? Imhotep?
 - Edwin Smith & Mustafa Agha
 - 48 case histories
 - Observations & treatment
History of Wound Infections

• Hippocrates (460-377 BC)
 – Father of Medicine
 – Vinegar Irrigation & Dressings

• Galen (130-200 AD)
 – Roman Gladiatorial Surgeon
 – Pus Heralded Healing
 • Misguided – Poor Understanding

• Ambroise Paré (1510 – 1590)
 – French Military Surgeon
 – “I dressed the wound. God healed it.”
History of Wound Infections

• Robert Koch (1843-1910)
 – Berlin
 – Infection linked to Microbial Growth
 – Bacterial Plating Technique
 – Nobel Prize 1905 – TB

• Ignaz Semmelweis (1818-1865)
 – Austrian Obstetrician
 – Hand Washing
 – 5 fold decrease puerperal sepsis
History of Wound Infection

• Joseph Lister (1827-1912)
 – British Surgeon
 – Applied Louis Pasteur’s Principles
 – Antisepsis Prevents Infection
 – Carbolic Acid in Open Fractures
 – Carbolic Spray
 • Operating Room
 • Instruments
World War 1
World War I

- Antoine Depage (1862-1925)
 - Belgian Surgeon
 - Debridement
 - Delayed Closure
 - Microbiological Brushings

- Alexander Fleming (1881-1955)
 - British Microbiologist
 - Bacterial Studies – WWI
 - Nobel Prize 1945 – Penicillin
 - Howard Florey
 - Sir Ernst Boris Chain
History of Wound Infections

- John Eric Erichsen (1818-1896)
 - British Surgeon
 - University Hospital College – London
- Hospitalism
 - Sir James Simpson (Edinburgh)
 - Surgical Site Infection
 - Hospital Acquired
History of Wound Infections

• Hospitalism (1874)
 – 1870-1873
 – 36% Mortality – Amputations
 • Four Major London Hospitals
 – 30-50% Mortality
 • England/France/Germany/USA
 – Safer to be operated at home

• Closer Look at Works of:
 – Lister
 – Pasteur
 – Koch
Aseptic Surgery

• Began in 1880’s
 – Instrument Sterilization
 • Not routine
 – Gowns
 – Masks
 – Gloves
 • William Stewart Halsted (1852-1922)
 • Caroline Hampton Halsted
 • J Bloodgood
Importance of Research

• Advancement of Medical Care
 – Cumulative progression of findings
 – Built on previous works
 – Documentation of practice
 – Need volume of patients with disease
 • World Events – WWI and WWII
 • Hospital – specialties
 • Personal – interests
Importance of Research

• Evidence Based Medicine
 – "the conscientious, explicit and judicious use of current best evidence in making decisions about the care of individual patients."

• Guidelines
 – Research will establish guidelines of care
 – Combination of research and clinical judgment to individual patient needs

†Sackett DL et.al. BMJ 312 (7023): 71–2
Why Should I do Research?

• Analyze and Modify Clinical Outcomes
 – Should I change my practice?

• Improve Quality of Care
 – Practice
 – Hospital

• Personal Goals
 – Gratification
 – Academic Advancement
Clinical Outcomes

• Bariatric Surgery
 – High Risk Operations
 – High Risk Patient Population
 – RYGB or Sleeve Gastrectomy
 – Morbidity
 • Staple Line Leak
 • Anastomotic Leak
 • MI
 • PE/DVT
 – Smoking??
Clinical Outcomes

• Background Literature
 – Smoking is among preoperative factors
 – No data as independent risk factor for bariatrics

• Should I make my patient’s quit preop?
NSQIP

• National Surgical Quality Improvement Program
• American College of Surgeons
• Hospital based
 – Currently 461 hospitals in the U.S. (36 Int’l)
 • More complex than other systems
 • Requires commitment of resources by hospital
What does NSQIP do?

- Clinical dataset
 - Prospectively collected data from many institutions reduce selection bias
 - Data more reliable than traditional administrative data
- Large set of peri-operative variables
- 30-day follow up
- Very large volume of data readily available for QI analysis
 - Our hospital
 - National comparison
- Huge national database for research
Smoking on All Bariatric Surgery

<table>
<thead>
<tr>
<th>Outcome (n = 41,445)</th>
<th>P</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficial Infection</td>
<td>.16</td>
<td>1.15 (0.95 – 1.40)</td>
</tr>
<tr>
<td>Deep Wound Infection</td>
<td>.93</td>
<td>1.02 (0.62 – 1.68)</td>
</tr>
<tr>
<td>Organ Space Infection</td>
<td>.01</td>
<td>1.45 (1.08 - 1.94)</td>
</tr>
<tr>
<td>Dehiscence</td>
<td>.74</td>
<td>0.90 (0.48 – 1.70)</td>
</tr>
<tr>
<td>Pulmonary Embolism</td>
<td>.24</td>
<td>0.63 (0.29 – 1.37)</td>
</tr>
<tr>
<td>Prolonged Intubation</td>
<td>.001</td>
<td>1.82 (1.26 - 2.63)</td>
</tr>
<tr>
<td>MI</td>
<td>.18</td>
<td>3.97 (0.54 – 29.27)</td>
</tr>
<tr>
<td>DVT</td>
<td>.15</td>
<td>0.62 (0.34 – 1.19)</td>
</tr>
<tr>
<td>Return to OR</td>
<td>.09</td>
<td>1.16 (0.98 – 1.38)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td><.0001</td>
<td>1.90 (1.42 – 2.54)</td>
</tr>
<tr>
<td>Reintubation</td>
<td>.01</td>
<td>1.62 (1.12 – 2.34)</td>
</tr>
<tr>
<td>Cardiac Arrest Requiring CPR</td>
<td>.74</td>
<td>1.15 (0.51 – 2.57)</td>
</tr>
<tr>
<td>Bleed Requiring Transfusion</td>
<td>.19</td>
<td>1.27 (0.89 – 1.83)</td>
</tr>
<tr>
<td>Sepsis</td>
<td>.01</td>
<td>1.49 (1.11 - 2.00)</td>
</tr>
<tr>
<td>Shock</td>
<td>.01</td>
<td>1.78 (1.16 – 2.74)</td>
</tr>
<tr>
<td>LOS>7 days</td>
<td>0.03</td>
<td>1.37 (1.12 – 1.67)</td>
</tr>
</tbody>
</table>
Smoking on Open Bariatric Surgery

<table>
<thead>
<tr>
<th>Outcome (n = 5749)</th>
<th>P</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficial Infection</td>
<td>.22</td>
<td>1.26 (0.87 – 1.81)</td>
</tr>
<tr>
<td>Deep Wound Infection</td>
<td>.34</td>
<td>0.63 (0.25 – 1.60)</td>
</tr>
<tr>
<td>Organ Space Infection</td>
<td>.03</td>
<td>1.79 (1.07 – 3.00)</td>
</tr>
<tr>
<td>Dehiscence</td>
<td>.92</td>
<td>1.05 (0.47 – 2.35)</td>
</tr>
<tr>
<td>Pulmonary Embolism</td>
<td>.16</td>
<td>0.24 (0.03 – 1.75)</td>
</tr>
<tr>
<td>Prolonged Intubation</td>
<td>.01</td>
<td>2.14 (1.21 – 3.80)</td>
</tr>
<tr>
<td>MI</td>
<td>.97</td>
<td>N/A*</td>
</tr>
<tr>
<td>DVT</td>
<td>.24</td>
<td>0.24 (0.10 – 1.76)</td>
</tr>
<tr>
<td>Return to OR</td>
<td>.45</td>
<td>1.17 (0.78 – 1.77)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td><.0001</td>
<td>3.06 (1.95 – 4.80)</td>
</tr>
<tr>
<td>Reintubation</td>
<td>.27</td>
<td>1.44 (0.76 – 2.72)</td>
</tr>
<tr>
<td>Cardiac Arrest Requiring CPR</td>
<td>.83</td>
<td>0.85 (0.25 – 2.95)</td>
</tr>
<tr>
<td>Bleed Requiring Transfusion</td>
<td>.38</td>
<td>0.58 (0.18 – 1.92)</td>
</tr>
<tr>
<td>Sepsis</td>
<td>.20</td>
<td>1.45 (0.82 – 2.57)</td>
</tr>
<tr>
<td>Shock</td>
<td>.19</td>
<td>1.59 (0.79 – 3.19)</td>
</tr>
<tr>
<td>LOS>7 days</td>
<td>.03</td>
<td>1.47 (1.04 – 2.08)</td>
</tr>
</tbody>
</table>
Smoking on Lap Bariatric Surgery

<table>
<thead>
<tr>
<th>Outcome (n = 35,696)</th>
<th>P</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficial Infection</td>
<td>.31</td>
<td>1.13 (0.90 – 1.42)</td>
</tr>
<tr>
<td>Deep Wound Infection</td>
<td>.48</td>
<td>1.24 (0.69 – 2.24)</td>
</tr>
<tr>
<td>Organ Space Infection</td>
<td>.10</td>
<td>1.35 (0.94 – 1.92)</td>
</tr>
<tr>
<td>Dehiscence</td>
<td>.52</td>
<td>0.71 (0.25 – 2.00)</td>
</tr>
<tr>
<td>Pulmonary Embolism</td>
<td>.60</td>
<td>0.79 (0.34 – 1.86)</td>
</tr>
<tr>
<td>Prolonged Intubation</td>
<td>.05</td>
<td>1.63 (1.01 – 2.64)</td>
</tr>
<tr>
<td>MI</td>
<td>.32</td>
<td>2.77 (0.37 – 20.65)</td>
</tr>
<tr>
<td>DVT</td>
<td>.29</td>
<td>0.68 (0.33 – 1.40)</td>
</tr>
<tr>
<td>Return to OR</td>
<td>.15</td>
<td>1.15 (0.95 – 1.40)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>.14</td>
<td>1.35 (0.91 – 2.00)</td>
</tr>
<tr>
<td>Reintubation</td>
<td>.04</td>
<td>1.61 (1.02 – 2.54)</td>
</tr>
<tr>
<td>Cardiac Arrest Requiring CPR</td>
<td>.58</td>
<td>1.35 (0.47 – 3.91)</td>
</tr>
<tr>
<td>Bleed Requiring Transfusion</td>
<td>.07</td>
<td>1.43 (0.98 – 2.10)</td>
</tr>
<tr>
<td>Sepsis</td>
<td>.04</td>
<td>1.44 (1.02 – 2.03)</td>
</tr>
<tr>
<td>Shock</td>
<td>.02</td>
<td>1.96 (1.14 – 3.36)</td>
</tr>
<tr>
<td>LOS > 7 Days</td>
<td>.05</td>
<td>1.29 (1.00 – 1.66)</td>
</tr>
</tbody>
</table>
Why Should I do Research?

• Analyze and Modify Clinical Outcomes
 – Should I change my practice?

• Yes → Smoking is an independent risk factor
 – Improve my clinical outcomes for all bariatrics
 – Decrease hospital stay
 • Decrease Cost
 • Improve resource utilization etc.

• Leads to next question/project
 – Optimal duration of smoking cessation preop?
Why Should I do Research?

• Analyze and Modify Clinical Outcomes
 – Should I change my practice?

• Improve Quality of Care
 – Practice
 – Hospital

• Personal Goals
 – Gratification
 – Academic Advancement
Quality Improvement

• Why Is It Important?
 – Medical decision making
 – Evaluation of hospital performance
 – Reimbursement
 – Public reporting
 • Institutional
 • Individual physician
 • Group practices
Medical Decision Making

118 NSQIP Hospitals
- 66% Improved Mortality
- 82% Improved Complication Rates

Projections if all hospitals were NSQIP
- Save 100K lives
- Prevent 2.5M complications
- $25 Billion cost savings

Quality Improvement

• Why Is It Important?
 – Medical decision making
 – Evaluation of hospital performance
 – Reimbursement
 – Public reporting
 • Institutional
 • Individual physician
 • Group practices
Evaluation of Hospital Performance

• Centers for Medicare & Medicaid Services

• http://www.medicare.gov/hospitalcompare

• Surgical Outcomes Comparison
 – GW
 – Georgetown
 – Howard
Evaluation of Hospital Performance

Preoperative DVT Prophylaxis
Evaluation of Hospital Performance

Postoperative Glucose Control
Quality Improvement

• Why Is It Important?
 – Medical decision making
 – Evaluation of hospital performance
 – Reimbursement
 – Public reporting
 • Institutional
 • Individual physician
 • Group practices
Reimbursement

• Outcomes Data Used in Reimbursement
• CMS Hospital Value Based Purchasing
 – The Hospital Value-Based Purchasing (VBP) Program is a Centers for Medicare & Medicaid Services (CMS) initiative that rewards acute-care hospitals with incentive payments for the quality of care they provide to people with Medicare.

 – Hospital Inpatient Quality Reporting Program
Reimbursement

• CMS and ACS
 – Pilot Program
 – Voluntary Reporting of ACS NSQIP Hospitals to Hospital Compare Program of CMS
 – Interest in Other Registries
 • MBSAQIP
 • TQIP
 • STS

• This is just the beginning...
Quality Improvement

• Why Is It Important?
 – Medical decision making
 – Evaluation of hospital performance
 – Reimbursement
 – Public reporting
 • Institutional
 • Individual physician
 • Group practices
Public Reporting

www.medicare.gov/hospitalcompare/search.html
Public Reporting

Postoperative Glucose Control
Public Reporting

• CMS
 – Physician Compare
 • Individual Physicians & Groups
 • Currently List
 • 2015 – Data Outcomes to be included

• Questions??
 – Methodology of Different Reports
 – Validation of Data
 – NSQIP
Our Results

• Semiannual Report (SAR) – source of all data
 – Comparison to all NSQIP Hospitals
 – De-identified
 – Every 6 months
 – Limited by number of cases
 • One or two cases can cause a significant bias
 • Start Date – Feb 2012

• New Interim “Semiannual” Report quarterly
<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Observed</th>
<th>Pred**</th>
<th>Expected</th>
<th>Odds Ratio</th>
<th>C.I.***</th>
<th>Outlier Decile</th>
<th>Comment*</th>
</tr>
</thead>
<tbody>
<tr>
<td>General/Vascular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GV Mortality</td>
<td>1495</td>
<td>18</td>
<td>1.22%</td>
<td>1.12%</td>
<td>1.03%</td>
<td>1.12</td>
<td>0.74</td>
<td>1.68</td>
</tr>
<tr>
<td>GV Mortality</td>
<td>1495</td>
<td>119</td>
<td>7.66%</td>
<td>7.89%</td>
<td>7.39%</td>
<td>1.01</td>
<td>0.90</td>
<td>1.32</td>
</tr>
<tr>
<td>GV Cardiac</td>
<td>1495</td>
<td>13</td>
<td>0.87%</td>
<td>0.73%</td>
<td>0.60%</td>
<td>1.24</td>
<td>0.79</td>
<td>1.94</td>
</tr>
<tr>
<td>GV Pneumonia</td>
<td>1490</td>
<td>20</td>
<td>1.34%</td>
<td>1.25%</td>
<td>0.87%</td>
<td>1.47</td>
<td>0.95</td>
<td>2.27</td>
</tr>
<tr>
<td>GV Unplanned Implantation</td>
<td>1494</td>
<td>12</td>
<td>0.80%</td>
<td>0.85%</td>
<td>0.92%</td>
<td>0.92</td>
<td>0.60</td>
<td>1.42</td>
</tr>
<tr>
<td>GV Ventilator > 48 hours</td>
<td>1339</td>
<td>25</td>
<td>1.87%</td>
<td>1.69%</td>
<td>1.06%</td>
<td>1.82</td>
<td>1.23</td>
<td>2.70</td>
</tr>
<tr>
<td>GV DVT/PE</td>
<td>1496</td>
<td>6</td>
<td>0.47%</td>
<td>0.53%</td>
<td>0.58%</td>
<td>0.91</td>
<td>0.56</td>
<td>1.46</td>
</tr>
<tr>
<td>GV UTI</td>
<td>1495</td>
<td>7</td>
<td>0.47%</td>
<td>0.59%</td>
<td>0.86%</td>
<td>0.68</td>
<td>0.40</td>
<td>1.17</td>
</tr>
<tr>
<td>GV SSI</td>
<td>1487</td>
<td>42</td>
<td>2.82%</td>
<td>2.86%</td>
<td>3.27%</td>
<td>0.87</td>
<td>0.65</td>
<td>1.17</td>
</tr>
<tr>
<td>GV ROR</td>
<td>1495</td>
<td>48</td>
<td>3.21%</td>
<td>3.18%</td>
<td>3.07%</td>
<td>1.04</td>
<td>0.79</td>
<td>1.37</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEN Mortality</td>
<td>1345</td>
<td>13</td>
<td>0.97%</td>
<td>0.88%</td>
<td>0.82%</td>
<td>1.01</td>
<td>0.71</td>
<td>1.72</td>
</tr>
<tr>
<td>GEN Morbidity</td>
<td>1345</td>
<td>66</td>
<td>4.91%</td>
<td>7.38%</td>
<td>6.88%</td>
<td>1.08</td>
<td>0.87</td>
<td>1.32</td>
</tr>
<tr>
<td>GEN Cardiac</td>
<td>1345</td>
<td>6</td>
<td>0.45%</td>
<td>0.40%</td>
<td>0.38%</td>
<td>1.05</td>
<td>0.65</td>
<td>1.69</td>
</tr>
<tr>
<td>GEN Pneumonia</td>
<td>1341</td>
<td>19</td>
<td>1.42%</td>
<td>1.28%</td>
<td>0.81%</td>
<td>1.62</td>
<td>1.03</td>
<td>2.54</td>
</tr>
<tr>
<td>GEN Unplanned Implantation</td>
<td>1344</td>
<td>8</td>
<td>0.60%</td>
<td>0.68%</td>
<td>0.75%</td>
<td>0.89</td>
<td>0.56</td>
<td>1.42</td>
</tr>
<tr>
<td>GEN Ventilator > 48 hours</td>
<td>1339</td>
<td>25</td>
<td>1.87%</td>
<td>1.57%</td>
<td>0.86%</td>
<td>1.84</td>
<td>1.20</td>
<td>2.81</td>
</tr>
<tr>
<td>GEN DVT/PE</td>
<td>1345</td>
<td>7</td>
<td>0.52%</td>
<td>0.57%</td>
<td>0.64%</td>
<td>0.98</td>
<td>0.52</td>
<td>1.52</td>
</tr>
<tr>
<td>GEN Renal Failure</td>
<td>1345</td>
<td>6</td>
<td>0.45%</td>
<td>0.50%</td>
<td>0.53%</td>
<td>0.95</td>
<td>0.61</td>
<td>1.47</td>
</tr>
<tr>
<td>GEN UTI</td>
<td>1345</td>
<td>7</td>
<td>0.52%</td>
<td>0.62%</td>
<td>0.80%</td>
<td>0.76</td>
<td>0.44</td>
<td>1.32</td>
</tr>
<tr>
<td>GEN SSI</td>
<td>1338</td>
<td>37</td>
<td>2.77%</td>
<td>2.84%</td>
<td>3.28%</td>
<td>0.85</td>
<td>0.63</td>
<td>1.17</td>
</tr>
<tr>
<td>GEN ROR</td>
<td>1345</td>
<td>34</td>
<td>2.53%</td>
<td>2.52%</td>
<td>2.50%</td>
<td>1.01</td>
<td>0.74</td>
<td>1.38</td>
</tr>
<tr>
<td>Colorectal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLORECTAL Mortality</td>
<td>109</td>
<td>2</td>
<td>1.83%</td>
<td>2.54%</td>
<td>2.74%</td>
<td>0.89</td>
<td>0.45</td>
<td>1.74</td>
</tr>
<tr>
<td>COLORECTAL Morbidity</td>
<td>109</td>
<td>25</td>
<td>22.94%</td>
<td>20.84%</td>
<td>17.40%</td>
<td>1.29</td>
<td>0.87</td>
<td>1.91</td>
</tr>
<tr>
<td>COLORECTAL Length-of-Stay</td>
<td>84</td>
<td>11</td>
<td>13.10%</td>
<td>14.76%</td>
<td>17.49%</td>
<td>0.78</td>
<td>0.47</td>
<td>1.31</td>
</tr>
<tr>
<td>COLORECTAL UTI</td>
<td>109</td>
<td>1</td>
<td>0.82%</td>
<td>1.77%</td>
<td>2.03%</td>
<td>0.87</td>
<td>0.44</td>
<td>1.71</td>
</tr>
<tr>
<td>COLORECTAL SSI</td>
<td>106</td>
<td>13</td>
<td>12.26%</td>
<td>10.73%</td>
<td>8.44%</td>
<td>1.31</td>
<td>0.80</td>
<td>2.16</td>
</tr>
<tr>
<td>COLORECTAL ROR</td>
<td>109</td>
<td>4</td>
<td>3.67%</td>
<td>4.28%</td>
<td>4.55%</td>
<td>0.94</td>
<td>0.56</td>
<td>1.57</td>
</tr>
<tr>
<td>Vascular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VASC Mortality</td>
<td>150</td>
<td>5</td>
<td>3.33%</td>
<td>3.30%</td>
<td>2.98%</td>
<td>1.05</td>
<td>0.61</td>
<td>1.62</td>
</tr>
<tr>
<td>VASC Morbidity</td>
<td>150</td>
<td>20</td>
<td>13.33%</td>
<td>12.86%</td>
<td>12.08%</td>
<td>1.08</td>
<td>0.72</td>
<td>1.62</td>
</tr>
<tr>
<td>VASC Cardiac</td>
<td>150</td>
<td>7</td>
<td>4.67%</td>
<td>3.13%</td>
<td>2.31%</td>
<td>1.41</td>
<td>0.76</td>
<td>2.61</td>
</tr>
<tr>
<td>VASC Pneumonia</td>
<td>149</td>
<td>1</td>
<td>0.67%</td>
<td>1.19%</td>
<td>1.53%</td>
<td>0.74</td>
<td>0.28</td>
<td>1.97</td>
</tr>
<tr>
<td>VASC UTI</td>
<td>150</td>
<td>0</td>
<td>0.00%</td>
<td>0.95%</td>
<td>1.40%</td>
<td>0.67</td>
<td>0.28</td>
<td>1.63</td>
</tr>
<tr>
<td>VASC SSI</td>
<td>149</td>
<td>3</td>
<td>3.66%</td>
<td>3.02%</td>
<td>2.32%</td>
<td>1.06</td>
<td>0.54</td>
<td>2.09</td>
</tr>
<tr>
<td>VASC ROR</td>
<td>150</td>
<td>14</td>
<td>9.33%</td>
<td>8.71%</td>
<td>7.73%</td>
<td>1.15</td>
<td>0.72</td>
<td>1.83</td>
</tr>
</tbody>
</table>
General & Vascular Surgery

<table>
<thead>
<tr>
<th>General/Vascular</th>
<th>Total Cases</th>
<th>Observed Events</th>
<th>Pred** Obs. Rate</th>
<th>Expected Rate</th>
<th>Odds Ratio</th>
<th>C.I.*** Lower</th>
<th>C.I.*** Upper</th>
<th>Outlier Decile</th>
<th>Comment*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GV Mortality</td>
<td>1495</td>
<td>18</td>
<td>1.20%</td>
<td>1.12%</td>
<td>1.03%</td>
<td>1.12</td>
<td>0.74</td>
<td>1.68</td>
<td>8</td>
</tr>
<tr>
<td>GV Morbidity</td>
<td>1495</td>
<td>119</td>
<td>7.96%</td>
<td>7.89%</td>
<td>7.39%</td>
<td>1.09</td>
<td>0.90</td>
<td>1.32</td>
<td>7</td>
</tr>
<tr>
<td>GV Cardiac</td>
<td>1495</td>
<td>13</td>
<td>0.87%</td>
<td>0.73%</td>
<td>0.60%</td>
<td>1.24</td>
<td>0.79</td>
<td>1.94</td>
<td>9</td>
</tr>
<tr>
<td>GV Pneumonia</td>
<td>1490</td>
<td>20</td>
<td>1.34%</td>
<td>1.25%</td>
<td>0.87%</td>
<td>1.47</td>
<td>0.95</td>
<td>2.27</td>
<td>9</td>
</tr>
<tr>
<td>GV Unplanned Intubation</td>
<td>1494</td>
<td>12</td>
<td>0.80%</td>
<td>0.85%</td>
<td>0.92%</td>
<td>0.92</td>
<td>0.60</td>
<td>1.42</td>
<td>4</td>
</tr>
<tr>
<td>GV Ventilator > 48 Hours</td>
<td>1339</td>
<td>25</td>
<td>1.87%</td>
<td>1.69%</td>
<td>1.06%</td>
<td>1.82</td>
<td>1.23</td>
<td>2.70</td>
<td>HIGH 10</td>
</tr>
<tr>
<td>GV DVT/PE</td>
<td>1495</td>
<td>11</td>
<td>0.74%</td>
<td>0.72%</td>
<td>0.69%</td>
<td>1.04</td>
<td>0.64</td>
<td>1.69</td>
<td>6</td>
</tr>
<tr>
<td>GV Renal Failure</td>
<td>1494</td>
<td>7</td>
<td>0.47%</td>
<td>0.53%</td>
<td>0.58%</td>
<td>0.91</td>
<td>0.56</td>
<td>1.46</td>
<td>3</td>
</tr>
<tr>
<td>GV UTI</td>
<td>1495</td>
<td>7</td>
<td>0.47%</td>
<td>0.59%</td>
<td>0.86%</td>
<td>0.68</td>
<td>0.40</td>
<td>1.17</td>
<td>2</td>
</tr>
<tr>
<td>GV SSI</td>
<td>1487</td>
<td>42</td>
<td>2.82%</td>
<td>2.88%</td>
<td>3.27%</td>
<td>0.87</td>
<td>0.65</td>
<td>1.17</td>
<td>4</td>
</tr>
<tr>
<td>GV ROR</td>
<td>1495</td>
<td>48</td>
<td>3.21%</td>
<td>3.18%</td>
<td>3.07%</td>
<td>1.04</td>
<td>0.79</td>
<td>1.37</td>
<td>6</td>
</tr>
</tbody>
</table>
General Surgery

<table>
<thead>
<tr>
<th>Condition</th>
<th>Total Cases</th>
<th>Observed Events</th>
<th>Rate</th>
<th>Pred** Obs. Rate</th>
<th>Expected Rate</th>
<th>Odds Ratio</th>
<th>C.I.*** Lower</th>
<th>C.I.*** Upper</th>
<th>Outlier Decile</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEN Mortality</td>
<td>1345</td>
<td>13</td>
<td>0.97%</td>
<td>0.88%</td>
<td>0.82%</td>
<td>1.11</td>
<td>0.71</td>
<td>1.72</td>
<td>8</td>
<td>As expected</td>
</tr>
<tr>
<td>GEN Morbidity</td>
<td>1345</td>
<td>99</td>
<td>7.36%</td>
<td>7.30%</td>
<td>6.88%</td>
<td>1.08</td>
<td>0.87</td>
<td>1.32</td>
<td>6</td>
<td>As expected</td>
</tr>
<tr>
<td>GEN Cardiac</td>
<td>1345</td>
<td>6</td>
<td>0.45%</td>
<td>0.40%</td>
<td>0.38%</td>
<td>1.05</td>
<td>0.65</td>
<td>1.69</td>
<td>7</td>
<td>As expected</td>
</tr>
<tr>
<td>GEN Pneumonia</td>
<td>1341</td>
<td>19</td>
<td>1.42%</td>
<td>1.28%</td>
<td>0.81%</td>
<td>1.62</td>
<td>1.03</td>
<td>2.54</td>
<td>HIGH 9</td>
<td>Needs Improvement</td>
</tr>
<tr>
<td>GEN Unplanned Intubation</td>
<td>1344</td>
<td>8</td>
<td>0.60%</td>
<td>0.68%</td>
<td>0.75%</td>
<td>0.89</td>
<td>0.56</td>
<td>1.42</td>
<td>3</td>
<td>As expected</td>
</tr>
<tr>
<td>GEN Ventilator > 48 Hours</td>
<td>1339</td>
<td>25</td>
<td>1.87%</td>
<td>1.57%</td>
<td>0.98%</td>
<td>1.84</td>
<td>1.20</td>
<td>2.81</td>
<td>HIGH 10</td>
<td>Needs Improvement</td>
</tr>
<tr>
<td>GEN DVT/PE</td>
<td>1345</td>
<td>7</td>
<td>0.52%</td>
<td>0.57%</td>
<td>0.64%</td>
<td>0.89</td>
<td>0.52</td>
<td>1.52</td>
<td>4</td>
<td>As expected</td>
</tr>
<tr>
<td>GEN Renal Failure</td>
<td>1345</td>
<td>6</td>
<td>0.45%</td>
<td>0.50%</td>
<td>0.53%</td>
<td>0.95</td>
<td>0.61</td>
<td>1.47</td>
<td>3</td>
<td>As expected</td>
</tr>
<tr>
<td>GEN UTI</td>
<td>1345</td>
<td>7</td>
<td>0.52%</td>
<td>0.62%</td>
<td>0.80%</td>
<td>0.76</td>
<td>0.44</td>
<td>1.32</td>
<td>2</td>
<td>As expected</td>
</tr>
<tr>
<td>GEN SSI</td>
<td>1338</td>
<td>37</td>
<td>2.77%</td>
<td>2.84%</td>
<td>3.26%</td>
<td>0.86</td>
<td>0.63</td>
<td>1.17</td>
<td>4</td>
<td>As expected</td>
</tr>
<tr>
<td>GEN ROR</td>
<td>1345</td>
<td>34</td>
<td>2.53%</td>
<td>2.52%</td>
<td>2.50%</td>
<td>1.01</td>
<td>0.74</td>
<td>1.38</td>
<td>6</td>
<td>As expected</td>
</tr>
</tbody>
</table>
Quality Improvement

• NSQIP
 – Identify Areas of Improvement
 – Identify Causative Factors
 • Institutional Data Review
• Quality & Process Improvement
 – Data Feedback
 • Hospital Committees
 • Physicians – all related specialties
 • Other Healthcare Providers – shared destiny
Why Should I do Research?

• Analyze and Modify Clinical Outcomes
 – Should I change my practice?

• Improve Quality of Care
 – Practice
 – Hospital

• Personal Goals
 – Gratification
 – Academic Advancement
Personal Goals

• How much research makes you happy?

• How much research do I have to do?
 – Residency
 – Attending
Residency

• Mandatory – *(my opinion)*
• Understanding of the process
 – Not necessarily in field of interest
• Ability to analyze and critique manuscripts
 • Accurate incorporation of data into your own practice
 • Not every manuscript published is useful
• National Exposure
 – Network of colleagues
 – Opportunities for collaboration
• Portfolio for Fellowship
Attending

• Mandatory – *(my opinion)*
• Answers Clinical Questions
 – Improves practice and patient care
• National Exposure
 – Network of colleagues
 – Opportunities for collaboration
Attending

- Academic Advancement
 - Clinical Contribution
 - Educational Contribution
 - Research Contribution
 - Community/National Contribution

- All are necessary

- Type of research contribution may vary upon practice
Research Opportunities?

• Clinical Research
 – Clinically heavy practice
 – Outcomes
 • Retrospective
 • Prospective
 • Database

• Basic Science Research
 – Bench research
 – Different time commitment
 – Almost impossible with clinically heavy practice

• Translational Research
 – Practical application of basic science findings
 – Most Impact
Research Opportunities?

• What is available to me?
 – Everything

• How do I get involved?
 – Find a faculty member with research in your field of interest
 – Have a research question or clinical question
Database Research

- Immediate access to large volume of patients
- Prospective or Retrospective
 - IRB Approval (relatively quick)
- Manageable time commitment
- NSQIP, TQIP, BQIP, NTDB
- NIS and others
Database Research

• Know your Database!!
 – Limitations of database = Limitations of Study
 – Type of database
 • Clinical vs. Administrative
 – Patient population
 • Representative sample?
 • Bias?
 • Are results generalizable?
 – Follow up?
 • How Long?
 • How is it obtained?
Database Research

• Know your Variables
 – Granularity is important
 – Limits ability for analysis
 – Limits ability to explode/narrow your focus

• NSQIP
 – Preop and Postop Variables (approx 170-200)
 – 30 day follow-up
 – Clinical database
AMERICAN COLLEGE OF SURGEONS
NATIONAL SURGICAL QUALITY IMPROVEMENT PROGRAM
CLASSIC WORKSHEET

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDN</td>
<td></td>
</tr>
<tr>
<td>Cycle Number</td>
<td></td>
</tr>
<tr>
<td>LMNR</td>
<td></td>
</tr>
<tr>
<td>Case Number</td>
<td></td>
</tr>
</tbody>
</table>

DEMOGRAPHICS

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First</th>
<th>MI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Street Address</td>
<td>State Province</td>
<td>Zip</td>
</tr>
<tr>
<td>City/Town</td>
<td>Country</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home Phone</td>
<td>Work Phone</td>
<td>Cell Phone</td>
</tr>
<tr>
<td>DOB</td>
<td>Gender</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Race</td>
<td>Ethnicity</td>
<td>Hispanic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SURGICAL PROFILE

<table>
<thead>
<tr>
<th>Principal Procedure</th>
<th>CPT Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient Status</th>
<th>Inpatient</th>
<th>Outpatient</th>
<th>Inpatient and Outpatient</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Unknown</td>
</tr>
<tr>
<td>Transfer Status</td>
<td>Not transferred, admitted directly from home</td>
<td>Transfer from other (i.e. spinal cord injury unit or other facility not listed)</td>
<td>Transfer from outside emergency department</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hospital Admission Date</th>
<th>Operation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/30/2022</td>
<td>12/31/2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level of Supervision</th>
<th>Attending alone</th>
<th>Attending & resident in OR suite</th>
<th>Attending not present, but available</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anesthesia Technique</th>
<th>General</th>
<th>Spinal</th>
<th>Epidural</th>
<th>Regional</th>
<th>Local</th>
<th>IVAC</th>
<th>None</th>
<th>Other</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surgical specialty (select one)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attending Surgeon’s Name</th>
<th>Attending Surgeon’s ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratory Data</th>
<th>Value 90 days</th>
<th>Value 30 days</th>
<th>Value 15 days</th>
<th>Value 7 days</th>
<th>Value 1 day</th>
<th>Unknown</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium (Na)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Na</td>
</tr>
<tr>
<td>Blood urea nitrogen (BUN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Na</td>
</tr>
<tr>
<td>Creatinine (Cr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Albumin (ALB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Total Bilirubin (TB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cr</td>
</tr>
<tr>
<td>Serum Glutamic-0xaloacetic Transaminase (SGOT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPT</td>
</tr>
<tr>
<td>Alkaline Phosphatase (AK Phos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AK</td>
</tr>
<tr>
<td>White Blood Count (WBC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total WBC</td>
</tr>
<tr>
<td>Hematocrit (Hct)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WBC</td>
</tr>
<tr>
<td>Platelets (PLT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WBC</td>
</tr>
<tr>
<td>Prothrombin Time (PTT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thrombin</td>
</tr>
<tr>
<td>International Normalized Ratio (INR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thrombin</td>
</tr>
<tr>
<td>Partial Thromboplastin Time (PTT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thrombin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revision</th>
<th>January 1, 2011</th>
</tr>
</thead>
</table>
Operative Information

- **Highest Level of Resident (0-10):** N/A
- **Emergency Case:** NO
- **Wound Classification:** Clean
- **ASA Class (circle one):** 1
- **Surgery Start:** 12:00 PM
- **Patient Out Room:** 2:00 PM
- **Anesthesia Start:** 11:30 AM
- **Anesthesia Finish:** 1:30 PM

Additional Operative Procedures

<table>
<thead>
<tr>
<th>Other Procedure</th>
<th>CPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
</tr>
</tbody>
</table>

Occurrences

Intraoperative Occurrences:
- Cardiac arrest requiring CPR
- Septic shock
- Other: ICD-9 Code:

Postoperative Occurrences:
- Pneumonia (Pnu)
- Unplanned intubation
- Other: ICD-9 Code:

Discharge Information

- **Discharge Destination:** Home
- **Post-op ICD-9 Code:** 410.9
- **Diagnosis:** Stroke/CVA
- **Readmission:** NO
- **Information Source:** Medical Record
- **Was this readmission unplanned at the time of the procedure?** NO

Occurrences Continued

- **CMS Occurrences:**
 - Stroke/CVA
 - Other:
- **Cardiac Occurrences:**
 - Cardiac arrest requiring CPR
 - Other:
- **Other Occurrences:**
 - Bleeding requiring transfusion
 - Other:
- **Medication:**
 - Tranquilizers
 - Other:

Hospital Discharge Information

- **Readmission for any reason within 30 days of the principle procedure?** NO
- **Postop Death with 30 days:** NO
- **Hospital Discharge Date:** 01/01/2022
- **Date of death:** 01/01/2022
- **Other:**

Notes

- If ICD-9 is unknown, describe the reason.
- **Was this readmission for a post-operative occurrence likely related to the principle surgical procedure?** NO
- **Still in hospital > 30 days:** NO
- **Postoperative Death:** NO
HOSPITAL DISCHARGE INFORMATION / READMISSIONS / MORTALITY / REOPERATIONS CONTINUED

Unplanned Reoperation:
Unplanned return to the operating room for a surgical procedure within 30 day postoperative period? □ YES □ NO

Was the return to the OR for a postoperative occurrence likely related to the principle procedure, or to any additional surgery performed under the same anesthetic as the principle procedure? □ YES □ NO

If yes, surgery date __/__/____ CPT code _____________ ICD9 code _____________

Source (select one) □ Medical Record □ Patient/Family Report □ Other

Notes: - If CPT code is not documented, describe the surgery.

Was there a SECOND unplanned reoperation within 30 days? □ YES □ NO

Was the second return to the OR for a postoperative occurrence that was likely related to the principle procedure, or to any additional surgery (i.e., 'other' or 'concurrent') performed under the same anesthetic as the principle procedure? □ YES □ NO

If yes: Surgery date __/__/____ CPT code _____________ ICD9 code _____________

Source (select one) □ Medical Record □ Patient/Family Report □ Other

Notes: - If CPT code is not documented, describe the surgery.

Were there more than two unplanned reoperations for an adverse outcome related to the principal surgery within 30 days? □ YES □ NO

FOLLOW-UP

Follow-up within 30 Days:
Were you able to follow the case for the full 30 days? □ YES □ NO

(NOTE: Answer yes for death within 30 days)

If you were unable to obtain the 30-day follow up information:

A) How many days (0-29) were you able to follow this case? _______

B) Which attempt methods were used for follow-up? (select all that apply)

Method # of attempts Method
□ Phone ________ □ Documentation
□ Letter ________ □ Other

Patient Contact Management:

Contact date: __/__/____ Contact action: □ Phone □ Letter □ Document □ Fax □ E-mail □ Other

Contact Results:
□ No Answer □ Letter Received □ Incorrect Number
□ Left Message □ Tailed to Patient □ Patient Refused
□ Letter Sent □ Talk to Family

Contact Notes:

Revision: January 1, 2011
Pitfalls Database Research

• Usually a Result of Not Understanding Database
 – Clinical question cannot be answered by data
 • Lacks datapoints
 • Lacks granularity
 • Confounding variables
 – Not in database
 – Can not be controlled
 – Overstatement of Conclusions
 • Generalizability of results
 • Database sample (population based?, voluntary?, bias?)
Conclusions

• Research is a key component understanding and providing the best care to your patients
• Database research is an important and readily available tool to answer clinical questions and ensure quality of care when used appropriately
• Research opportunities are available here at GW in all disciplines
Testing whether laughter is the best medicine

“Yes ... I believe there’s a question in the back.”