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Abstract. Atrial fibrillation is the most common cardiac arrhythmia. It is being effectively treated using the radio-
frequency ablation (RFA) procedure, which destroys culprit tissue and creates scars that prevent the spread of
abnormal electrical activity. Long-term success of RFA could be improved further if ablation lesions can be
directly visualized during the surgery. We have shown that autofluorescence-based hyperspectral imaging
(aHSI) can help to identify lesions based on spectral unmixing. We show that use of k -means clustering,
an unsupervised learning method, is capable of detecting RFA lesions without a priori knowledge of the
lesions’ spectral characteristics. We also show that the number of spectral bands required for successful
lesion identification can be significantly reduced, enabling the use of increased spectral bandwidth.
Together, these findings can help with clinical implementation of a percutaneous aHSI catheter, since by
reducing the number of spectral bands one can reduce hypercube acquisition and processing times, and
by increasing the spectral width of individual bands one can collect more photons. The latter is of critical
importance in low-light applications such as intracardiac aHSI. The ultimate goal of our studies is to help
improve clinical outcomes for atrial fibrillation patients. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JMI.5.4.046003]
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1 Introduction
Atrial fibrillation (AF) is the most common cardiac arrhythmia,
affecting as many as 10 million people in the United States
alone.1 Most of the abnormal sources of bioelectrical activity
causing AF have been found in the left atrium near the entrance
of the pulmonary veins.2 AF can be treated by destroying the
culprit tissue, thereby creating scar tissue, which prevents abnor-
mal activity from spreading.3 Radiofrequency ablation (RFA) is
a common surgical procedure being used widely to ablate living
tissues, including in the atria. Testing of electrical conduction is
then used to determine if abnormal sources of electrical activity
have been isolated. Even after passing such testing, however,
patients can later experience repeat AF arising because revers-
ible tissue injury and temporary edema can also stop electrical
activity.4 When tissue recovers, electrical reconnections can lead
to AF recurrence. The recurrence rate of AF after an ablation
procedure can be as high as 50% and more than 90% of
these recurrent cases have been linked to gaps between ablation
lesions.5–7 Incomplete placement of lesions that later result in
AF recurrence can be curtailed if clinicians could directly mon-
itor lesion formation along with the degree of tissue damage.
Unfortunately, the endocardial surface of the left atria, where
most of RF ablation procedures are performed, is covered by
thick layers of collagen and elastin preventing direct visualiza-
tion of ablated muscle beneath. While imaging technologies
such as MRI, CT, and ultrasound have been successfully applied

for lesion testing, they have significant limitations. CT and MRI
are expensive, involve radiation and/or contrast agents, and
ultrasound imaging has poor image resolution.8,9 Therefore,
our group has been exploring a visualization approach called
autofluorescence hyperspectral imaging (aHSI) and has shown
that it is effective in revealing ablation-induced damage includ-
ing the highly collagenous human left atrium.10–14

To implement the aHSI approach during the RFA procedure,
one has to deliver ultraviolet (UV) light (λ ¼ 365 nm) to
the heart by an optical fiber threaded into a percutaneous
catheter.15,16 This allows illumination of the endocardial atrial
surface, which is highly autofluorescent. The autofluorescence
signal is then detected through the image guide and the attached
HSI camera system, which forms a stack of images acquired at
individual wavelengths. Figure 2 shows a summary diagram of
such a system, and Fig. 3 shows the hypercube construction. The
hypercubes contain rich spectral information about the tissue.
Our previous studies have shown that subtle changes in the
tissue autofluorescence profiles can help to identify the ablated
regions in both animal and human atrial tissues.10,11 In those
studies, we had to preacquire target spectra for lesion and non-
lesion sites before applying linear unmixing,10 since it is a super-
vised learning method. The first objective of this work was to
apply an unsupervised learning method, k-means clustering, to
detect RFA atrial lesions without a priori knowledge about tis-
sue spectra. Our second objective was to use k-means clustering
to select the minimal number of spectral bands (feature groups)
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without significantly reducing the accuracy of lesion detection.
This is important for future implementation of an intracardiac
aHSI catheter, since it is beneficial to decrease the number of
spectral images within the hypercube while preserving the meth-
od’s ability to reveal the lesions. First, having fewer images
will speed-up both acquisition and processing, enabling us to
visualize the ablated areas in real time. Second, by widening
spectral bands around the most useful wavelengths, one can
collect more photons and make the output images more robust
to noise.

Figure 1 briefly summarizes this study. The ground truth
areas of lesion were obtained from the aHSI system by linear
unmixing and verified by 2,3,5-triphenyl-2H-tetrazolium chlo-
ride (TTC) analysis. By comparing with truth data, we found
the optimal k-value for k-means algorithm (green) as well as
the optimal groups (blue). The procedure on the left (red) is our
proposed methods for lesion detection from ablated tissue to
lesion areas. More details about the procedures of this study
are shown in the flowchart in Sec. 6.

2 Materials and Methods

2.1 Hyperspectral Imaging Hardware

Atria from freshly excised porcine hearts were ablated by a
nonirrigated RF ablation catheter (Boston Scientific). Several
lesions were created on one tissue sample. Atria were illumi-
nated with a 365-nm UVA LED (Mightex, Pleasanton,
California) placed ∼10 cm from the tissue surface. A CCD cam-
era outfitted with a Nikon AF Micro-Nikkor 60 mm f∕2.8D
objective and a liquid crystal tunable filter (LCTF, Nuance
FX, PerkinElmer/CRi) was used to acquire hypercubes of the
samples.

The LCTF was tuned to pass the wavelengths from 420 to
720 nm at wavelengths separated by the filter’s band interval,
10 nm; this yielded 31 channels. We note that the full-width at
half-maximum (FWHM) of the response at each wavelength is
specified as a constant (20 nm) for the Nuance FX.17 The effect
of the FWHM on spectral resolution is minimal, in light of the

subsequent grouping of bands (see Sec. 2.3.2). As shown in
Fig. 2, through the LCTF, a lens projects the collected light
onto a CCD containing 1392 × 1040 pixels. Finally, the hyper-
cube for each sample was constructed from the 31 autofluores-
cence images, each of size 1392 × 1040 (see Fig. 3). Ten
samples were used in this study; therefore, we collected 310
autofluorescence images in total.

2.2 Data Preprocessing

For each sample, we combined the 31 images into a three-
dimensional (3-D) hypercube and extracted spectral profiles
from each x and y pixel. Each spectrum was then divided
by the spectral sensitivity curves of the CCD camera and
the LCTF10 (correction), followed by normalization, which
converted values of each spectrum to the range from 0 to 1
[Fig. 4(a)]. Normalization is critical because for the classifica-
tion algorithm it is the overall shape of the spectrum that
matters, but not the absolute light intensity at each wavelength.
For normalization, the maximum value was set at 1 and the
minimum value at 0. More details about the importance of
normalization step are included in the reference to our earlier
work.10

TTC analysis

Linear unmixing
aHSI

system

Feature 
groups

k-means

Ablated tissue

Lesion areas

Decide k
Decide 
groups

Truth 
data

Compare

Fig. 1 The flowchart summarizes the methods used in this study.

Fig. 2 Schematic showing hypercube acquisition. CCD, charge
coupled device; LCTF, liquid crystal tunable filter; UV LED, ultraviolet
light-emitting diode.

Fig. 3 Hypercube of aHSI images: images in the hypercube were
ordered by their wavelength increasingly on the Z -axis. Each pixel
on the X − Y plane thus has an associated spectrum.
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Then, we reshaped the 3-D hypercube to a two-dimensional
(2-D) matrix according to the rule shown in Fig. 4(b): for
every point on the X − Y plane (a pixel), the data along
the spectral dimension were considered as a vector in the
new 2-D matrix; the pixels were ordered from left to right
in the first row (upper left), then in the second row and so
forth. The spectrum of each pixel in the X − Y plane was
represented as a vector in the matrix; the matrix therefore
had 31 columns corresponding to 31 spectral bands (420 to
430 nm, 430 to 440 nm,. . . ,710 to 720 nm). Hereafter, we
refer to each pixel as a sample; each sample is a vector of
31 features.

2.3 Unsupervised Learning and Lesion Detection

2.3.1 Background

Unsupervised learning methods can infer the hidden structures
or extract information from unlabeled data.18,19 Its advantage is
that a priori knowledge (e.g., labels) about the targets is not
required before performing detection. Unsupervised learning
algorithms have been applied to target detection in various
fields, such as anomaly detection,20 road detection,21 object
recognition,22 and salience detection.23–26

In this study, we used k-means clustering27 as an unsuper-
vised learning algorithm to cluster samples (vectors of spectra)
into k clusters, numbered by integers from “1” to “k”. Each
location (pixel) of the spectrum was labeled with its cluster
number. Then, we assigned colors to those numbers to allow
visualization of the clusters. Since the spectra of lesions and
nonlesions are different, they were assigned different colors
to be distinguished visually from the other tissues.

The clustering algorithm was performed in a computer with
Intel® Core™ i7-6700 3.40 GHz CPU and 16.0 GB RAM. Its
operating system is Windows 10 and application is MATLAB
R2016b. The built-in k-means function in MATLAB applies
the squared Euclidean distance measure and the “k-means++”
algorithm for initializing cluster centers; and its maximum
number of iterations is 100.

2.3.2 Grouping and clustering

Our goal was to use band grouping to decrease the number of
spectral components to at most four. If one can use four
composite spectral bands, this will enable four quadrants of
the camera chip to be used simultaneously (see Sec. 2.6).28

This also has the benefit of increasing the signal-to-noise
ratio, which is essential because of the weak fluorescence
and its attenuation by the optical fiber. The next step was to
use machine learning algorithms to detect lesion areas through
those four features. The effectiveness of a given set of four
groups was assessed using k-means clustering.27 In our case,
we have 1040 × 1392 ¼ 1;447;680 samples for each dataset.
We performed k-means clustering, in which the value of k is
unknown initially and determined by experiment. Each pixel
was labeled by its cluster. Then, we assigned colors to these
numbers to allow visualization of the clusters. The procedure
is shown in Fig. 5.

The k-means clustering method is a commonly used
unsupervised machine learning algorithm. In general, given
an input set fxig having m d-dimensional real vectors, we
use k-means clustering to partition the m vectors into kð≤ mÞ
sets S ¼ fs1; s2; : : : ; skg and minimize the within-cluster sum
of squares

Fig. 4 (a) Preprocessing operations and reshaping hypercube into a 2-D matrix and (b) the rule of
reshaping and inverse-reshaping.

Fig. 5 K -means clustering.
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EQ-TARGET;temp:intralink-;sec2.3.2;63;752arg min
S

Xk

j¼1

X

x∈sj

kx − μjk2;

where μj is the mean of vectors in sj. It is implemented with
Lloyd’s algorithm.29

2.4 Creating Reference Images

To be able to evaluate any lesion detection method, one must
have sets of images in which the lesions are labeled. This section
describes the construction of such sets. A traditional way to
outline the lesions is to stain tissue with TTC. The content of
dehydrogenase enzymes and NADH declines within ablated
tissue. Since those compounds turn tetrazolium salts into a
formazan pigment, viable tissue turns red, while lesion areas
appear white [Fig. 6(a)]. TTC staining thus provides reliable
identification of lesions and their boundaries; this is TTC-
reference.

Our previous studies have shown that lesions detected by the
linear unmixing algorithm based on preacquired spectral libra-
ries closely match RF lesions in the corresponding TTC image
(TTC-reference).10,11 Figure 6(b) shows one such example.
Therefore, we considered the lesion component image obtained
using linear unmixing of a 31-band hypercube as a reference
image; this is called gray-unmixing-reference.

The gray-unmixing-reference has a continuous gray-scale,
and lesions are brighter (have larger gray values) than nonlesion
areas. To create a new image that identifies unambiguously
the lesion and nonlesion pixels, we used a gray-level threshold.
The threshold was found by Otsu’s method,30 which uses
the image’s histogram to find the threshold that maximizes
the between-class variance. The pixels with intensities greater
than the threshold then were then labeled “lesion;” all others
were considered “nonlesion.” Having this binary (two-class)
image (the biunmixing-reference), enabled us to then quanti-
tively evaluate the k-means approach.

K-means clustering yielded an image in which each pixel
was labeled with an integer from “1” to “k.” For finding the
label of lesions, we recorded the locations of all lesion pixels
(whose value is “1”) in the biunmixing-reference. Then,
we examined all the corresponding pixels (those having the
same locations) in the k-means image. Since every pixel
has a label (cluster number) after k-means clustering, we can
calculate the modal (most-often occurring) label of these
sample pixels as the label of lesions; all other labels represent
nonlesions. Finally, in the clustering image, all pixels having

the label of lesion were set to value “1;” and other pixels (non-
lesion) were set to value “0.” So, we obtained the binary image
(the bi-31-result) for lesion detection by k-means clustering
using 31 features.

2.5 Evaluation by Accuracy Index

To verify whether k-means clustering using 31 features is an
effective method to detect lesion areas, we measured pixel-to-
pixel matching by comparing the bi-31-result [example: lesions
colored red in Fig. 8(d)] with the outcome of linear unmixing
[lesion areas in bi-unmixing-reference; example: white regions
in Fig. 8(f)].

The bi-unmixing-reference (IRef ) and bi-31-result (I31Rlt) are
binary images having the same size; if the value of a given pixel
was different in the two images, it was declared to be a “miss.”
Accuracy index (Acc) was defined as 1 minus the ratio of the
number of “miss” (Diff) to the total number (N) of pixels of
lesion areas in the two (detected and truth) images:

EQ-TARGET;temp:intralink-;sec2.5;326;546AccðIRef ; I31RltÞ ¼ 1 −
Diff

N
:

If the accuracy was acceptable, we could use the lesions
that were detected by k-means using 31 features as a reference
(bi-31-result) to evaluate the outcomes after the next step:
feature grouping.

2.6 Feature Grouping

We implemented a grouping procedure, which divides the 31
features into four contiguous disjoint groups. For each group,
we calculated the sum of values as a new feature value, yielding
four new features (see Fig. 7).

There are 4060 ways to divide 31 features into four separate
and contiguous groups. The 31 features are the intensities at
each of the wavelengths from 420 to 720 nm. The goal was
to find the best four-feature groupings from the 4060 possible
combinations to adequately detect the lesion areas. That number
is sufficiently small that we could construct every possible
grouping and get its detection result (the bi-4-result).

We assigned a serial number (SN) to each combination. The
boundaries between groups were described by the last feature’s
number in the first, second, and third group. “720” is not shown
because it is always the last feature’s number in the fourth group
(Table 1).

We assess the bi-4-results (I4Rlt) by comparing them to the
bi-31-results (I31Rlt) to yield the accuracy: AccðI31Rlt; I4RltÞ
whose calculation method was the same as AccðIRef ; I31RltÞ.

Fig. 6 Appearance of ablated tissue after: (a) linear unmixing from
aHSI system and (b) TTC staining. Fig. 7 One kind of four-feature grouping.
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3 Results

3.1 Lesion Detection by k-Means Clustering

For porcine samples that encompassed an area of 1392 ×
1040 pixels, Fig. 8(a) shows that k ¼ 5 is not sufficient to
distinguish ablated regions for this sample (Set-1). To find
the optimal k, we computed k ranging from 2 to 41 for all our
porcine datasets. For each k, we plotted the maximum, average,
and minimum accuracies over the 10 datasets in Fig. 9.

Because a smaller k will make k-means run faster, we seek
the smallest k that is effective. Figure 9 shows that k ¼ 10

is overall optimal: it is the smallest k that almost reaches
all the highest values for maximum, average, and minimum
accuracies. As shown in Fig. 8(b), k ¼ 10 is effective for the
Set-1 sample.

A set of 31 aHSI planes was required to obtain the lesion
detection results shown above. The accuracy of lesion detection

(e) lesion component image (f) outcome of Otsu’s threshold 

(c) original image at 500nm (d) detected lesion areas

(a) k=5 (b) k=10

Fig. 8 Results for porcine atria (set-1) clustered by k -means into: (a) five clusters and (b) 10 clusters.
(c) An autofluorescence image at 500 nm; (d) the lesion areas (red) detected when k ¼ 10, superim-
posed on the image in (c). The corresponding lesion component image, which is from the unmixed
image that contains lesion and nonlesion components, is shown in (e); followed by binary image obtained
from (e) by applying Otsu’s thresholding (f).

Table 1 Combinations of four groups.

SN
Three dividers for

four-feature grouping (nm)

1 420, 430, 440

2 420, 430, 450

3 420, 430, 460

. . . . . .

28 420, 430, 720

29 420, 440, 450

30 420, 440, 460

. . . . . .

4060 690, 700, 710
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by k ¼ 10-means clustering using 31 aHSI planes has been
measured by comparison with the images revealed by linear
unmixing (bi-unmixing-reference). Table 2 shows their accura-
cies. Note that dataset 3 has lower accuracy than the others
because Otsu’s algorithm cannot automatically extract a good
binary reference image on this dataset.

The average accuracy for detection by k ¼ 10-means using
31 features was about 74% when evaluated using the bi-unmix-
ing-reference. We then grouped the features. The goal was to
decrease the number of spectral bands without reducing the
accuracy of lesion detection appreciably.

3.2 Feature Grouping

Using the same sample, by comparing its bi-4-result with bi-31-
result pixel by pixel, we calculated the accuracy of the feature
grouping. In this experiment, we computed the accuracies for
4060 combinations of four groups for one sample (set-1); the
accuracy for each SN is shown in Fig. 10. (The periodicity
apparent in Figs. 10–13 is an artifact of the serial-numbering
system, and has no significance.)

By analyzing Fig. 10, we found the feature grouping having
the highest accuracy of lesion detection for this specific sample.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
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Fig. 9 Maximum, average, and minimum accuracies over 10 datasets for each k .

Table 2 Accuracies of 31-feature clustering results.

Dataset 1 2 3 4 5 6 7 8 9 10

AccðIRef; I31RltÞ 0.87 0.91 0.38 0.80 0.69 0.82 0.66 0.87 0.66 0.75
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Fig. 10 Accuracies of SNs for one dataset (set-1).
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As shown in Fig. 14, the four-feature result with higher accuracy
(b) identifies more complete lesion areas than the 4-feature
result with lower accuracy (c).

We then applied the same approach to the remaining datasets.
The goal was to find four-feature grouping combinations that
have high accuracies of lesion detection across multiple studies.
To do this we examined the accuracies for all 10 datasets
(Fig. 11). As Fig. 11 shows, the accuracy of a given feature
grouping varies across datasets. One group-selection method
is to record the worst performance of a feature grouping across
all datasets:

EQ-TARGET;temp:intralink-;sec3.2;63;96WSN ¼ min
i
fAi

SNg;

where Ai
SN is the accuracy of the i’th dataset and SN is the serial

number.
The result (Fig. 12) shows that there are many four-feature

groupings that perform well (peaks) across all samples we
tested. But taking the worst performance has a flaw: if there
exists one bad dataset, reducing accuracies of all feature
groupings appreciably, it will influence the result greatly.
If we plot the smoothed (by average) minimum accuracies,
obviously periodic phenomenon to series numbers is shown.
Figure 15 shows the locations (wavelength) of dividers and
the smoothed minimum accuracy value (scaled) to each SN.
And, by looking at this figure, one can notice that such periods
are defined by the first divider. We also noticed that the SN
range in the green area (2730 to 3245), in which the divider
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Fig. 11 Feature grouping accuracies for 10 datasets; each row represents a dataset.
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Fig. 12 Accuracies over 10 datasets.
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(a) 31-feature result (b) example of a four-feature
   result with 97% accuracy   

(c) example of a four-feature
    result with 35% accuracy 

lesions

Fig. 14 Feature grouping results for porcine atria (set-1): (a) k -means clustering (k ¼ 10) by using all
31 features; (b) k -means clustering (k ¼ 10) by using four features from 4-feature grouping (SN ¼ 2857):
(wavelength groups: 420 to 510, 520 to 600, 610 to 630, and 640 to 720 nm); (c) k -means clustering
(k ¼ 10) using four features from different four-feature grouping (SN ¼ 3716): (wavelength groups:
420 to 580, 590 to 600, 610 to 680, and 690 to 720 nm).
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Fig. 15 Evaluated accuracies over 10 datasets.
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Fig. 13 Smoothed minimum accuracies (scaled) with the three dividers.
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1 ranges from 510 to 530 nm, includes most high-accuracy
combinations.

Another method is to design an evaluation function to reflect
the average performance of a feature grouping combination
through all samples:

EQ-TARGET;temp:intralink-;sec3.2;63;611ESN ¼
Y

i

1

1 − Ai
SN

;

where Ai
SN is the accuracy of i’th dataset and SN is the serial

number of combination.
By this equation, a feature grouping combination will get

a large score if its accuracy is close to 1. Thus, this nonlinear
function emphasizes high accuracy values. Since the maximum
value of accuracy in this work was less than 0.99, ESN is
bounded. By comparing the two results (Figs. 12 and 15),
we observe that the good-performance combinations are similar.
The evaluation function could find a better grouping for all
tested datasets than the minimum accuracy method, but the
grouping that we obtained from the max-min method could
be more stable for new datasets because it provides a reliable
lower bound on accuracy.

From this evaluation, the highest value (red point) is obtained
with the four-feature grouping (420 to 520, 530 to 590, 600 to
640, and 650 to 720 nm) (SN ¼ 3018). Using this grouping,
we found the accuracies of four-feature clustering results for
all datasets (Table 3).

3.3 Time Cost for k -Means Clustering

An important practical issue is the computing time cost for
k-means clustering based on all 31 features and that based on
the four grouped features. We used 10 datasets to test the
time cost of k-means clustering. The main factors that affect
the computation time are the number of sample vectors, the
dimension of vectors (the number of features), maximum
iterations of k-means, and the value of k. For one dataset, the
number of sample vectors is fixed (1040 × 1392 ¼ 1;447;680),
and the default maximum iterations of k-means in MATLAB
is 100. Therefore, the running time depends primarily on the
number of features and the value of k. The running times of
k-means may vary for each run. For a given k, the time cost
of four-feature clustering is about 41.3% of that of the 31-feature
clustering, while the average accuracy of four-feature clustering
by grouping (420 to 520, 530 to 590, 600 to 640, and 650 to
720 nm) is about 95% of that of the 31-feature clustering
(Fig. 16). We conclude that the four-feature grouping can greatly
speed up the processing while maintaining good accuracy of
lesion detection.

4 Discussion
We used the k-means clustering method to find the lesion sites
and compared the outcomes to those using linear unmixing.
Since k-means is an unsupervised learning algorithm, we did

not require a priori knowledge of lesion spectra. In contrast,
the supervised learning methods do require such knowledge
about the lesion to construct the training set containing labeled
spectra. In practice, k-means assigns lesion and nonlesion areas
to different groups and assigns different colors. The outcome of
k-means verified our hypothesis that the spectra of ablated tissue
are different from those of nonablated tissue. Also, it confirmed
that the autofluorescence images contain information about
the components and structure of tissues.10 Whereas k-means
clustering is in general repeatable, one disadvantage is that
the detected lesion regions may vary slightly for each clustering
result from a given dataset. That is a characteristic of k-means
because the initial points of groups are selected randomly, and
the clustering result may be affected by the choice of initial
points.

Alternatively, we could apply supervised learning methods.
A classifier would be trained through labeled lesion and
nonlesion spectral data. One advantage of supervised classifi-
cation is that the regions of lesion detected by a classifier
model are invariant for a given dataset. Though the time
for training a classifier might be greater, the lesion detection
process by using the classifier would be faster unless the
classifier model is very complicated (nonlinear and in high
dimension). But its disadvantage is that one will require a
large amount of labeled lesion and nonlesion spectral data for
such training.

In future work, we could use spectral unmixing to group
the features instead of k-means clustering. As a supervised
detection method, the end-member spectra used for unmixing
are generated from labeled lesion and nonlesion spectral data.
An advantage of spectral unmixing is that its detected result
yields continuous values for the intensities of lesions, from
which one may be able to infer the depths and 3-D shapes
of lesions.10,31 In contrast, the detected areas provided by
k-means are binary images.

To evaluate the results presented in this paper, we compared
the outcomes after feature grouping with the results before
feature grouping (I4Rlt versus I31Rlt). In addition, the results

Table 3 Accuracies of four-feature clustering results by grouping (SN = 3018): (420 to 520, 530 to 590, 600 to 640, and 650 to 720 nm).

Dataset 1 2 3 4 5 6 7 8 9 10

AccðI31Rlt; I4RltÞ 0.97 0.99 0.96 0.96 0.92 0.93 0.96 0.93 0.89 0.95
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Fig. 16 Time costs for k -means clustering.
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before feature grouping were verified by comparing them with
the outcomes of linear unmixing (I31Rlt versus IRef ). A direct
comparison between the outcomes of k-means and TTC staining
would have been ideal, but this presents practical problems.
First, the chemical reaction that occurs during TTC staining
makes ablated tissues shrink to a certain degree. Second, images
taken after TTC staining are not taken at exactly the same ori-
entation, so an exact comparison is not possible, even when
image registration methods are used. But since the main goal
of this paper was to find the best feature grouping, direct com-
parison with TTC was not necessary; and we have previously
reported a direct comparison between lesion surface areas of
the lesions in TTC images and those obtained in gray unmixing
images.10,31 By computing the difference between detected
lesions before and after feature grouping, we still were able to
achieve our goal.

The best four feature grouping or spectral band areas corre-
sponded to major changes in tissue autofluorescence spectra
caused by ablation. Specifically, interested readers are referred
to Ref. 10, Fig. 4(c), and Ref. 11, Fig. 4(a) for ablation-
induced spectral changes in porcine and human atrial tissue,
respectively. The first range of 420 to 510 nm corresponds to
decreased signal intensity associated with ablation-induced
loss of NADH autofluorescence. The second range of 610 to
630 nm corresponds to increased signal intensity caused by
ablation-induced tissue scattering. Ranges 3 and 4 have much
less amount of returning light and therefore are less significant.
This biological explanation fits well with our observation
that SN in green-shaded area of Fig. 13, in which the divider
1 ranges from 510 to 530 nm, includes most high-accuracy
combinations. The 510 to 530 nm is, in fact, where ablation-
induced change in autofluorescence changes sign from negative
to positive.

5 Conclusions
As the most common sustained arrhythmia, AF is expected
to affect more than 10 million people by 2050.1 Our group is
developing imaging tools for real-time visualization of ablated
tissue. The long-term goal of our studies is to help develop
an intracardiac aHSI catheter (Fig. 17) that can improve
the success rate of RF treatment, reduce the incidence of AF
recurrence, and help to avoid retreatment of the previously
ablated tissue.

We have recently demonstrated the ability of autofluores-
cence hyperspectral imaging to reveal ablated tissue using linear
unmixing protocols.10–14 Here, we have shown that k-means,
an approach that does not require a priori knowledge of tissue
spectra, can be also an effective means to detect lesions from
aHSI hypercubes. The average accuracy for detection by

k-means (k ¼ 10) using 31 features was about 74% when com-
pared to reference images. Second, we have also demonstrated
that the number of spectral bands (which are referred to as “fea-
tures”) can be reduced (by grouping them) without significantly
affecting lesion detection accuracy. Specifically, we show that
by using the best four grouped features, the accuracy of lesion
identification was about 94% of that using 31 features. The time
cost of four-feature clustering was about 40% of that of the
31-feature clustering, demonstrating that four-feature grouping
can speed up acquisition and processing. From an instrumenta-
tion point of view, by using a limited number of features one is
able to combine multiple spectral bands into one spectrally wide
band. This is extremely beneficial for low-light applications
such as implementation of aHSI via catheter access.

6 Appendix
Abbreviations/symbols used in this paper are shown in Table 4
and the methods of this study and their interconnections
(expanded version of Fig. 1): red lines denote the lesion-detec-
tion system in use; green lines define how the best k is found for
k-means; blue lines define how the best four-feature groups are

Table 4 Abbreviations/symbols used in this paper and in Fig. 18.

Abbreviation/symbol Full name/explanation

TR TTC-reference: the image of stained tissue
with TTC, which provides reliable
identification of lesions and their boundaries.

GUR Gray-unmixing-reference: the lesion
component image obtained using linear
unmixing of a 31-band hypercube as
a reference image.

BUR; IRef Bi(nary)-unmixing-reference: convert GUR
from gray-level image to binary image by
Otsu’s method.

B31R; I31Rlt Bi(nary)-31(feature)-result: binary image of
lesion detection obtained by k -means
clustering using 31 features.

B4R; I4Rlt Bi(nary)-4(feature)-result: binary image of
lesion detection obtained by k -means
clustering using grouped four features.

SN Assigned serial number to each combination
of four groups.

Fig. 17 Proposed concept of acquiring hyperspectral imaging data from the heart.
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found; and black lines denote the reference data. Superscripts
indicate the sections of the text in which the process is
described.
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