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Abstract: In vivo autofluorescence hyperspectral imaging of moving objects can be 
challenging due to motion artifacts and to the limited amount of acquired photons. To address 
both limitations, we selectively reduced the number of spectral bands while maintaining 
accurate target identification. Several downsampling approaches were applied to data 
obtained from the atrial tissue of adult pigs with sites of radiofrequency ablation lesions. 
Standard image qualifiers such as the mean square error, the peak signal-to-noise ratio, the 
structural similarity index map, and an accuracy index of lesion component images were used 
to quantify the effects of spectral binning, an increased spectral distance between individual 
bands, as well as random combinations of spectral bands. Results point to several quantitative 
strategies for deriving combinations of a small number of spectral bands that can successfully 
detect target tissue. Insights from our studies can be applied to a wide range of applications. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 
Spectral imaging, in fields spanning astronomy to medicine, has proven to be a valuable tool 
in practical applications such as chemical detection, food sorting, non-invasive diagnosis and 
many others [1–3]. The ability to identify the spectrum of each pixel in the image of a scene 
provides rich data sets that can be used to detect different materials and processes. The data 
collected represent three-dimensional matrices where the x and y axes depict spatial 
information while wavelengths are plotted in the z-direction. When the number of 
wavelengths is large enough to reconstruct a continuous spectrum, this imaging modality is 
commonly referred to as hyperspectral imaging (HSI). On the other hand, if the number of 
collected spectral wavelengths is discrete and these bands are narrow and/or separated, it is 
then called multispectral imaging (MSI). 

A trade off exists between the dynamic range of the image, its spatial resolution, and the 
time of acquisition. Faster integration times decrease the amount of light collected and lead to 
lower signal quality. Reducing the number of spectral bands on the other hand limits the 
amount of information available for post-acquisition classification. The ultimate goal of this 
paper is to find quantitative measures that will allow the transition from a HSI to a MSI mode 
without a significant decline in the ability to recognize target tissue. Such transition can 
benefit the two main classes of hyper and multi-spectral imagers available to date. In 
scanning systems, decreasing the number of bands needed results in faster scans. In non-
scanning or snapshot systems reducing the number of channels yields higher spatial resolution 
of subfield images. Rapid spectral imaging is particularly important for dynamic targets or 
processes that require quick feedback, examples being surgical procedures and food sorting. 

Our group is interested in using spectral approaches for endoscopic visualization of 
damaged heart tissue [4–8], including ablation lesions within the upper chambers of the heart. 
Such lesions are created using radiofrequency (RF) energy to destroy sources of abnormal 
electrical activity leading to atrial fibrillation. While this is a commonly used clinical 
procedure, repeated admissions are often reported among patients receiving RF treatment for 
atrial fibrillation [9]. The procedure’s high recurrence rate can be improved if surgeons were 
able to directly visualize necrotic tissue formation during the procedure. Yet, endoscopic 
visualization of RF lesions is challenging since visual differences in the color and contrast 
between lesions and non-ablated atrial tissue are negligible [10–12]. To solve this challenge, 
advanced spectral imaging approaches such as HSI can be helpful. Indeed, we have recently 
shown that autofluorescence-based HSI can reveal outlines of RF lesions even in a highly 
collagenous human left atria [4]. These bench experiments were conducted using HSI camera 
outfitted with a wide aperture, high numerical aperture objective and in absence of any 
motion. To implement this approach clinically, HSI has to be done via percutaneous access, 
which dramatically decreases the amount of light both delivered and collected. In addition, 
imaging of a beating heart requires fast acquisition to minimize contraction artifacts. Both 
constraints severely limit the amount of photons to be split between multiple spectral bands. 

In this report we examine several strategies for choosing wavelength ranges and 
combinations with the overall goal to minimize the number of spectral bands and to enable 
faster acquisition. As a case study we used a library of 14 samples of left atrial tissue from 
adult pigs each having 2 to 5 endocardial ablation lesions. We started by examining the effect 
of increasing the size of the spectral step. We then considered binning spectral ranges and 
how this can affect classification power and signal quality. Finally, we investigated whether 
HSI cubes containing only two, three, or four bands can reveal the lesions. We compared the 
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quality of the resulting component images to the ones extracted from high spectral resolution 
HSI cubes. 

The metrics presented can be used to select a limited number of wavelengths towards in 
vivo imaging. Finding combinations of few spectral bands that are sufficient for lesion 
identification, would allow for simultaneous acquisition using the latest advances in fast 
scanning and high spatial resolution non-scanning imaging [13–17]. Overall, our studies offer 
several unbiased quantitative strategies as to how to limit the number of acquisition 
wavelengths while recognizing the target tissue with high accuracy. Insights from this work 
can be used in a wide range of biomedical and optical applications. 

2. Methods 
2.1 Tissue sources and ablation procedures 

Ablations were performed on the endocardial surface of left atrial tissue freshly excised from 
pigs of mixed gender (Yorkshire, 5-6-month old, 180-260lb). Cardiac tissue samples were 
collected and used immediately after surgical training at the Washington Institute of Surgical 
Education at the George Washington University or from a local abattoir as described 
previously [4]. To expose the endocardial surface of excised hearts, the left and right atria 
were dissected along the atrioventricular groove, and along the interatrial septum to allow for 
the inversion of the tissue. The atria were then spread out for imaging. Atria were kept on ice 
throughout the experiments to minimize changes in the levels of chromophores and 
fluorophores. Radiofrequency energy was delivered with either non-irrigated (EP 
Technologies, Boston Scientific) or irrigated (LuxCath catheter, Nocturnal Product 
Development LLC, Cary, NC) ablation catheters. We have previously shown that spectral 
changes are non-significant between the two groups [6]. The 4 mm non-irrigated ablation tip 
was placed perpendicularly to the endocardial surface of porcine atrial tissue with ablation 
durations varying from 5 to 30 seconds and tip temperatures ranging between 50 and 70°C. 

2.2 Hyperspectral image acquisition and analysis 

Samples were illuminated with a 365nm UVA LED source (Mightex, Pleasanton, CA) placed 
~10 cm from the tissue surface. A CCD camera (Nuance FX, PerkinElmer/CRi) combined 
with a liquid crystal tunable filter (LCTF) and outfitted with a Nikon AF Micro-Nikkor 60mm 
f/2.8D objective enabled spectral scanning through acquisition wavelengths yielding a stack 
of images, here on referred to as hypercube (Fig. 1(A)). The Nuance FX system is capable of 
capturing wavelengths from 420 to 720 nm at a spatial resolution of 1392x1040 pixels with 
spectral steps ranging from 1 to 100nm. To derive the quantitative and qualitative conclusions 
described in this paper, two independent sets of data were collected. The first set consisted of 
three HSI cubes acquired at 2nm steps, each cube containing 151 images. The second set 
included 14 cubes acquired at 10nm spectral steps, each cube containing 31 images. Smaller 
cubes were derived by downsampling the initial 2nm hypercubes. 

Extracted spectra were corrected for the spectral sensitivity of the LCTF and the CCD 
chip and normalized as previously described [6]. HSI cubes of varying sizes were analyzed 
via the Nuance FX proprietary software using manual unmixing protocols [18], in which the 
user manually chooses two regions of interest corresponding to lesions and unablated tissue 
(Fig. 1(A)). Examples of component images for lesion site and unablated tissue are presented 
in Fig. 1(B). In this report, we use the lesion component images (LCIs) as the reference for 
quality assessment. Similar results were obtained using unablated tissue component (data not 
shown). 
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Fig. 1. Hyperspectral Image acquisition and manual unmixing. A. Imaging set up 
comprised of Nuance FX camera and LCTF filter. Arrow points to an example of a hypercube. 
Example of spectral information of pixel is sketched in red. A raw image on the far right shows 
the difficulty of visualizing lesions with UV illumination. Average spectra of pixels from two 
regions of interests shown in red and green were used for the unmixing protocol. B. Example 
of corrected and normalized spectra for non-ablated and ablated cardiac tissue with an example 
of corresponding lesion component images (LCIs) used in the analysis presented this paper. 

2.3 Image quality assessment 

To quantify the image quality of various spectral ranges and wavelength combinations, we 
used several image quality descriptors. First, we computed the signal-to-noise ratio (SNR) of 
the spatial intensity profile across LCIs. A linear region-of-interest was placed across the 
center of the lesion and the resulting profile was then separated into signal and noise by 
means of wavelet-based decomposition [19,20]. SNR was then computed as: SNR = 
Psignal/Pnoise, where Psignal and Pnoise are the average power of the signal and noise respectively. 

We also compared the LCIs derived from downsampled cubes to those found in the 
reference LCI which was derived from the 2nm hypercube. Towards this goal, four different 
classical image descriptors were used: the Mean Square Error (MSE), the Peak Signal to 
Noise Ratio (PSNR), the Structural Similarity Index Map (SSIM) and the Accuracy Index 
(Accu). MSE is computed by averaging the squared difference in intensity between the tested 
and reference images and represents a cumulative error measure. PSNR represents a measure 
of the peak error and was obtained by computing the ratio between the maximum power of 
possible signal and the power of the noise between a target and reference image according to 

the following equation for 8-bit gray images: 
2

10
25510log ( ).PSNR
MSE

=  

The third index, SSIM, was developed as a measure of the changes in the image attributes 
independent of the luminance and the contrast of the image [21]. 

The fourth index, called Accuracy (Accu), was based on binary, pixel-to-pixel matching 
between pixels that were identified as being part of the lesion sites within the reference image 
and the image to be tested. First, the reference LCI was converted from gray-value to a binary 
(bi-reference) image using a threshold value defined by the user. Second, we applied similar 
user defined threshold to convert the LCI obtained from gray-value to binary (bi-test). 
Accuracy index (Accu) was then defined as: Accu = 1- Diff/N, where N is the total number of 
pixels identified as lesions in both images and ‘Diff’ was calculated by XOR operator to 
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identify differences in both images. From the view of set theory, if Ir and It are the point’s sets 

for lesions in bi-reference and bi-test image, the Accuracy is: 
2

.r t

r t

I I
Accu

I I
∩

=
+

 

 

Fig. 2. Effect of step size on SNR of ablated component image. A. Ablated component 
images of porcine left atria showing 5 lesions. Component images were obtained by unmixing 
hypercubes with spectral step sizes of 2nm, 10nm, 20nm, 50nm and 100nm. The red dotted 
line indicates the line of pixels corresponding to spectra shown in B. B. Line profile of ablated 
component image obtained using component images shown in A). C. Quantified and 
Normalized Signal-to-Noise Ratio (SNR) of spectra shown in B (N = 3, n = 8). A decreasing 
linear trend between SNR and step size was found significant (R2 = 0.91). 

2.4 Fast unmixing to test the best 2, 3 and 4 cube combinations 

Snapshot imaging depends on a limited number of bands to achieve results similar in SNR 
levels and accuracy of classification to the high spectral resolution HSI cubes. Towards this 
goal, we sought to compare the quality of component images generated from all possible 
random combinations of cubes with 2-, 3- and 4-spectral bands. Combinations were 
determined using binomial functions in Matlab (Appendix, Fig. 1). Corresponding 
coefficients were used to generate new data vectors and appropriately sized reference spectra. 
Matrix reshaping was applied to transform each cube from a [W, L, M] matrix into WxL = N 
distinct vectors each having M length. Each vector represents the spectrum of a pixel within 
the image. This matrix (size: NxM) was the observation (O). Reference spectra for lesions 
and unablated tissue were computed from the mean corresponding spectra of 14 studies (Fig. 
1(B)). Spectra were then used to compute the component images as described previously by 
Xu and Rice [22]. This group of reference spectra forms another matrix (G, size: 2xM) having 
two rows, which stand for unablated and lesion spectra. C is the contribution matrix (Nx2) 
where each row represents the two composition weights of two reference spectra to form one 
row (vector) in the O. Therefore, it can be defined as a linear least squares (LS) problem: 
O CG E= + , where E is the error matrix (N x M). The goal is to find a C to minimize the 

error: 2 2e E CG O= = − , hence, 
2

0
d CG O

CG O
dC
−

= ⇒ = . Since G may not be a 

square matrix, we cannot get its inverse directly. So: 
T TCG O CGG OG= ⇒ = ⇒ ( ) 1T TC OG GG

−
= . For each column (N length) in C, we 

reshaped it to a [W, L] matrix. One of the two matrices shows the lesion component and 
another the unablated tissue component. 
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2.5 Statistical analysis 

Values are presented as mean ± SEM unless otherwise noted. Statistical significance was 
determined using ANOVA. When significance was found, a Tukey post-hoc test for multiple 
comparisons was performed for pairwise comparisons. Significance was defined at the p < 
0.05 level. Evaluation of the linearity between image quality measures and the different 
wavelengths was determined by calculating the R2 coefficient of multiple correlations. 

3. Results 
3.1 Reduction of HSI cube size by increasing the spectral step 

To quantify how reducing cube size by lowering spectral resolution can affect the signal 
quality of the LCI, we first looked at the noise in the image. Data were downsampled to 
create smaller cubes at 10 nm, 20 nm, 50 nm and 100 nm spectral steps, corresponding to 31, 
16, 7 and 4 bands in each cube, respectively. The LCI obtained from unmixing the full, 2nm-
step hypercube was used as a reference (Fig. 2). As expected, the line profile across the lesion 
sites reveal that SNR follows a decreasing linear trend with increased spectral step size (R2 = 
0.91) (Fig. 2(C)). 

 

Fig. 3. Effect of spectral step size on the quality of ablated component images. A-D. Mean 
Standard Error, Peak Signal to Noise Ratio (PSNR), Structural Similarity Matrix (SSIM) and 
Accuracy indices were computed to compare the quality of LCIs obtained from unmixing 
under sampled hypercubes (10, 20, 50 and 100 nm spectral step size) vs LCIs obtained by 
unmixing 2nm step size hypercubes. Linear trends were observed for MSE, PSNR and SSIM 
indices (R2 = 0.91, 09.1, and 0.98 respectively). (E). Example images of SSIMs showing the 
differences in the quality of LCIs as we increase the step size compared to the reference 
component image F. Difference images between LCIs and reference image. 

To further quantify how the quality of the LCI changes with increased spectral steps, we 
compared four standard image quality assessment descriptors as outlined in the Methods. 
Analysis of the MSE, PSNR and SSIM indices revealed similar, statistically significant linear 
trends (Fig. 3(A)-3(C)). An ascending linear relation was identified for MSE (R2 = 0.91, 
p<0.05), while both PSNR and SSIM indices show a decreasing linear relation with increased 
step size (R2 = 0.91 and 0.98 respectively). Accuracy index, on the other hand, revealed 
significant differences between LCIs only when spectral step increased to 100 nm while LCIs 
obtained using 50nm and 100nm steps showed no statistical significance despite a sharp 
decrease in Accu from a mean of 0.89 at 50nm to a mean of 0.67 at 100nm (Fig. 3(D)). 
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To better illustrate what constitutes the decreased SSIM index, we show an example of 
sample SSIM maps (Fig. 3(E)) and difference images for various spectral steps (Fig. 3(F)). 
Darker areas represent a larger difference between LCIs vs reference LCI obtained from the 
full cube, reflecting the degradation in the lesion detection accuracy with decreased spectral 
resolution. 

3.2 Binning of spectral bands 

We then examined the effect of binning several spectral bands together. First, the 420-720nm 
spectrum was divided into five 60nm-wide spectral ranges, each encompassing fifteen 2nm-
spaced bands (Fig. 4). We then used these 60nm spectral ranges to generate LCIs. For all four 
quantitative measures we obtained the highest LCI quality for the 480nm – 538nm spectral 
range (i.e., it yielded the lowest MSE and the highest PSNR, SSIM and Accu indices, Fig. 
4(A)). Further binning of this most effective range (i.e., dividing it into smaller, 30-nm wide 
ranges) led to a decline in all measures as shown in Fig. 4(B), pointing to a limit as to how 
much the spectral range can be narrowed. 

3.3 Minimization of the cubes to two, three, and four bands 

Next, we looked at the possibility of a random combination of different wavelengths. To do 
so, we used custom Matlab algorithms based on Xu & Rice [22] to test all possible 2-, 3- and 
4-band combinations. These combinations were derived from the second set of experiments 
that acquired 14 HSI cubes, each containing 31 spectral bands 10nm apart. The numbers of 
cube groupings tested were 465, 4495, and 31465 for 2-, 3-, and 4-band combinations, 
respectively. To speed-up the processing of such a large number of data sets, we used a fast 
unmixing protocol based on matrix multiplication (Details in Methods and Appendix Fig.7). 
Although this protocol yields slightly different numerical values, it provides similar trends 
and conclusions when compared to the more computationally costly unmixing approach that 
uses linear regression analysis-based unmixing [18]. The direct comparison of the two 
methods is shown in Appendix Fig.8. As shown in Fig. 5, SSIM index and PSNR values 
revealed a pattern of increased PSNR for the 4-band cubes compared to the 3- and 2-band 
cubes, although the SSIM indices remain relatively low for all cases. Moreover, the frequency 
of combinations with increased PSNR and SSIM values increase with an increased number of 
bands in the unmixed cubes as shown in Fig. 5(B). Accuracy results for all 14 cases studied 
on the other hand (Fig. 6), clearly show improved accuracy values for the 4-band case 
compared to the 3- and 2- band cases. Although some individual cases from the 3- and 2-band 
cubes analyzed had accuracy values higher than 80%, the mean values remained lower than 
50%. One can also note an increased deviation of the accuracy values for the 2-band cubes 
compared to the 3- and 4- band cubes. This is even more evident in box plots of individual 
studies presented in Appendix Fig.9. 

Highest accuracy values for 2-, 3- and 4-band combinations are presented in Table 1. The 
best cube combinations based on accuracy are comparable to the ones based on SNR, SSIM 
or MSE, pointing to an overall robustness of the methods used. 
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Fig. 4. Effect of binning multiple wavelengths on the quality of ablated component 
images. A. Results of Peak SNR (PSNR), Mean Standard Error and Structural Similarity 
Matrix index (SSIM index) for 60nm binned ranges (2nm spectral resolution) Example LCIs 
are shown on the left. B. Results of all measures from smaller bin sizes (gray) shown in 
comparison to the full range (black). Example LCIs are shown on the right. 

 

Fig. 5. Four, three and two band cubes for speedy detection of RF lesions. A. Relation 
between SSIM and PSNR is non-linear and bimodal. B. Histogram of SSIM indices and PSNR 
for all combinations of 2, 3 and 4 band cubes. Frequency of combinations with higher SSIM 
indices and/ or PSNR increases with increased size cubes. 

 

Fig. 6. Four, three and two band cubes for speedy detection of RF lesions. Accuracy results 
of the fast unmixing using 2-, 3-, 4- band cubes sorted in decreasing order. The mean accuracy 
value from 14 experimental studies is depicted by the thick grey line with black lines showing 
standard deviation. 
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Table 1. Top accuracy values for two-, three- and four-band combinations. 

4-band selection* ACCURACY  3-band selection* ACCURACY 
rank #1 #2 #3 #4 mean std  rank #1 #2 #3  mean std 

1 430 560 570 700 0.82 0.10  1 430 560 700  0.75 0.15 
2 430 560 590 670 0.81 0.11  2 430 560 690  0.74 0.13 
3 430 560 600 690 0.81 0.11  3 430 560 680  0.71 0.16 
4 430 560 600 700 0.80 0.12  4 430 570 670  0.70 0.24 
5 430 560 600 680 0.80 0.09  5 430 560 710  0.69 0.25 
6 430 560 570 690 0.82 0.14  6 430 550 710  0.68 0.15 
7 430 560 570 680 0.79 0.14  7 430 570 700  0.68 0.30 
8 430 560 560 710 0.78 0.12  8 430 570 690  0.68 0.30 
9 430 550 580 700 0.78 0.13  9 430 570 680  0.66 0.29 
10 430 560 580 700 0.78 0.24  10 430 570 660  0.64 0.24 
11 430 550 560 700 0.77 0.12  11 430 720 720  0.63 0.39 

12 430 560 590 680 0.77 0.23  12 430 720 720  0.62 0.39 
13 430 560 600 670 0.77 0.11  2-band selection ACCURACY 
14 430 550 600 680 0.76 0.10  rank #1 #2   mean std 
15 430 570 690 720 0.76 0.14  1 480 530   0.43 0.41 

16 430 570 590 670 0.76 0.23  2 470 530   0.43 0.40 

17 430 570 700 720 0.76 0.14  3 480 550   0.41 0.44 

18 430 560 570 670 0.76 0.14  4 470 550   0.41 0.44 

19 430 570 580 680 0.76 0.24  5 480 520   0.40 0.43 

20 430 560 590 700 0.75 0.31  6 480 540   0.39 0.42 

21 430 560 580 680 0.75 0.24  7 460 550   0.39 0.42 

22 430 560 590 690 0.75 0.31  8 470 520   0.38 0.42 

23 430 560 580 690 0.75 0.24  9 470 540   0.38 0.40 

24 430 560 710 720 0.74 0.15  10 490 520   0.36 0.39 

25 430 550 600 690 0.74 0.23  11 450 550   0.36 0.39 

*Only first 25 combinations of four bands are shown  12 490 530   0.36 0.39 

4. Discussion 
4.1 Accurate detection using a limited number of wavelengths 

The results presented in this report show the feasibility of using a very limited number of 
specific wavelengths to achieve accurate differentiation between ablated and unablated atrial 
tissue. We also show that degradation of signal quality does not necessarily relate to the 
ability to classify tissue accurately. Specifically, when reducing the spectral steps, we 
revealed a linear trend of degradation in all three image quality measures (PSNR, MSE and 
SSIM index). Meanwhile the accuracy remained significantly indifferent up to 100nm 
resolution (4 wavelengths: 420, 520, 620 and 720) compared to component images obtained 
using the full visible spectra at 2nm resolution (Fig. 2). 

As presented in Eq. (1), PSNR is a function of MSE. Although the information provided 
by both indices differ quantitatively, they remain dependent as shown in Eq. (1). On the other 
hand, the SSIM index and accuracy are independent of each other and all other quantitative 
image quality measures. With this knowledge, a comparison of the results using all four 
measures, allows the user to better assess signal and image quality. Examples are presented in 
Figs. 2 and 3 where PSNR, MSE and SSIM indices support significant quality degradation in 
the target image compared to the reference component image, while the accuracy results 
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remain higher than 80%. These results suggest a minimal deviation in the ability of the 
algorithm to differentiate between lesion and unablated tissue when compared to lesion 
outlines identified from the reference image. 

Our results also support the possibility of significantly reducing the range of acquisition 
(the latter, of course, is an application specific conclusion). In our case, the ability to 
differentiate between lesions and unablated tissue was not significantly changed when 
spectral range was narrowed five-fold (i.e., from 300 to 60nm). Specifically, component 
images derived from cubes in the specific range (480-538 nm) showed the highest PSNR, 
SSIM index and accuracy values while maintaining the lowest MSE. This range was the best 
across all ranges tested. It also yielded LCIs comparable to the ones obtained by unmixing 
hypercubes that encompass the entire visible range (Fig. 4). 

This observation can be explained by our current knowledge of biological fluorophores. In 
cardiac tissue, the most common endogenous structural fluorophores are collagen and elastin, 
while the main fluorophores involved in cellular metabolism are nicotinamide adenine 
dinucleotide (NADH) and flavin adenine dinucleotide (FAD) [23]. When excited with UV 
light, collagen, elastin and NADH all exhibit broad autofluorescence within 400-550nm 
range. NADH has a wide peak close to 460-480nm which dramatically declines during the 
ablation. On the other hand, increased light scattering at the lesion site leads to a red shift in 
the normalized autofluorescence spectrum [6]. Combination of these factors leads to maximal 
spectral differences between lesions and unablated tissue to be observed within 480-540 
range. 

Finally, we studied whether random combinations of discreet wavelengths grouped in 2-, 
3- and 4-band cubes, can also reveal ablation induced lesions (Figs. 5&6). It is interesting to 
note that for the best 25 cases, the four-band cube combinations shared the first wavelength. 
Furthermore, wavelengths in the three remaining bands, were within a 20nm window from 
each other (Table 1). These results support the notion of a minimal number of optimally 
selected wavelengths that can consistently reveal small variations between the spectra of 
ablated and unablated tissue. Furthermore, these results support the possibility of on-the-fly 
real-time analysis of cardiac tissue while it is being surgically ablated. 

For the latter application it is important to consider heart contraction artifacts. Typical 
resting heart rates in humans are between 60 and 100 beats per minute. The best way to avoid 
motion which can distort cube acquisition would be to gate the acquisition to occur during 
diastole (estimated between 0.3– 0.4 sec). In vivo implementation of the results presented in 
this paper can include snapshot hyperspectral imaging devices [24–26] or use of ECG gating 
to acquire frames at sequential cycles. 

4.2 Post-processing techniques used for wavelength selection 

Adaptive wavelength selection has been reported for multiple applications in the near infrared 
and visible range spectroscopy. Examples of such techniques include partial least-squares, 
principal component regression, least-square approaches, genetic algorithms, simulated 
annealing, or stepwise elimination [27–29]. Optimizing these algorithms, can be 
computationally expensive [30–32]. In our study, we show how application of standard image 
qualifiers and an accuracy measure that we have developed, can be effective in yielding high 
accuracy LCIs by selecting band combinations using as few as 2-, 3-, or 4- bands. 

4.3 Measurement stability and subject variations 

Subject-to-subject variations play an important role when considering the best combination of 
acquired bands for specific application. Results presented in Table 1 show that the variations 
between subjects decreased with increased number of wavelengths. Minimum and maximum 
standard deviations of accuracy in the 4-band case were 0.09 and 0.31 respectively. These 
values increased to 0.13 and 0.39 in the case of 3-band and 0.39 and 0.41 in the 2-band case. 
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An additional way to reduce subject variability can be acquisition of a pre-treatment 
hypercube to be used as an internal calibration standard. One can also explore alternative 
post-acquisition processing approaches. For example, we have recently reported the use of K-
means clustering as an unsupervised learning method enables one to accurately differentiate 
between ablated and non-ablated tissue without a priori knowledge of spectral signatures [33]. 

It is important to note that unlike absolute oxygen saturation measurements previously 
reported [17,34–36], our measurements rely on detecting the differences between the two 
states of the tissue under study (ablated vs. unablated), both visible in the field of view. As 
such, the need to perform calibration measurements would have less of an effect on the 
unmixing protocol since detected changes are relative differences between these two states of 
the tissue in the same subject. 

4.4 Survey of current systems suitable for dynamic imaging 

Dynamic applications of hyperspectral technology require fast acquisition and processing 
times. The results presented here, can benefit the two major classes of spectral imagers, i.e, 
scanning and snapshot based systems. In scanning systems that use acousto-optical tunable 
filters [37,38], line-scanning [39], point-by-point scanning [40] or liquid tunable filters [26], 
decreasing the number of bands needed, results in faster scans for the same spatial resolution. 
Faster acquisition times in such systems can also be achieved through narrowing the range of 
acquisition while maintaining the same spectral resolution as detailed in section 3.2 and Fig. 
4. 

For our particular application however, some of the most promising devices to achieve 
fast temporal spectral imaging include snapshot multispectral imagers. The latter acquire a 
limited number of wavelengths usually projected on the same chip detector. Compared to 
scanning based systems, snapshot imagers provide longer dwell times per pixel. As such, 
these imagers are better suited for applications with dim and dynamic targets such as 
endocardial fluorescent imaging [13]. 

A number of commercial products and recently reported snapshot based custom systems 
have shown the possibility of video rate spectral imaging with tunable spectral resolutions 
and varied integration times (few recent examples are listed in Table 2). Commercially 
available cameras such as IMEC can acquire up to 25 channels at 16 fps, while systems from 
Pixelteq can acquire 3-9 wide band channels simultaneously at rates up to 30 fps. Other 
examples include custom fitted systems for real-time spectral imaging, such as the image 
mapping spectrometry (IMS). The system is capable of simultaneously acquiring 40 channels 
at a resolution of 350x350 pixels [17]. More recently, the same group reported using Lenslet 
array based tunable snapshot imaging spectrometry (LATIS) for high resolution fluorescence 
imaging with reported resolutions of 200x200 at 27 spectral channels and integration time of 
less than a second [13]. Other recently reported in-vivo systems include 4D snapshot 
hyperspectral video-endoscope [41], fiber-based prototype imaging spectrometer for oxygen 
saturation measurements [14] and Lyot filters based multispectral imagers [42]. 

Additionally, limiting the number of acquired channels would allow the design of systems 
that have wider slits per channel. This is particularly important in maximizing the number of 
photons acquired in low light applications such as ours. 
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Table 2. Example of current high resolution, high speed spectral imagers 

Name and Reference Instrument 
approach / class 

Original Camera 
chip size (pixels) 

Number of 
acquired channels 

Rate of acquisition 

SNAPSCAN (VNIR) Ultrasonic piezo 
Linescan, IMEC 

3,650 x 2,048  + 150 2-40 sec 

XIMEA, MQ022HG-
IM-SM4X4-VIS 

CCD Snapshot 
Mosaic 

2048 × 1088 16 170 cubes/ sec 

PixelCam | Pixelteq | 
OEM Multispectral 
Imaging Camera | 
Acal BFi BE 

Filter 
array/Snapshot 
Mosaic 

2048 X 2048 4 or 6 bands 15 fps 

Specim IQ CMOS snapshot 
mosaic 

2592 x 1944 204  

LATIS [13] Tunable Lenslet 
array and IMS 

1624x4872 Up to 27 N/A 

High spatial sampling 
light-guide snapshot 
spectrometer [17] 

IMS 4872 x 3248 Up to 40 7.2 fps 

4.5 Scope of applications 

Our findings can be useful for the design of optical devices aimed at live imaging of ablated 
cardiac tissue. They also can be applied more broadly to measurements of oxidative state 
[43], scar detection, edema or vessel visualization, just to name a few [8]. Spectral imaging 
coupled with deep learning algorithms for texture identification, fiber orientation 
measurements and other metabolic metrics, can provide a wealth of information about cardiac 
function and disease as well as guide surgeons in operating room settings. 

5. Conclusion 
Applications of metrics presented in this report can benefit a variety of hyper and 
multispectral imaging systems ranging from snapshot to scanning by providing objective 
means for the optimal selection of bands for maximal accuracy and least variations across 
subjects. We have also shown that a limited number of channels and/or simplified unmixing 
algorithms can be used to reveal ablated atrial tissue; this paves the way for on-the-fly in vivo 
RF lesion visualization. Such visualization can significantly improve the affordability and the 
success rate of the surgical procedures that are being used to treat atrial fibrillation. 
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Appendix: Figures 

 

Fig. 7. Fast unmixing protocol described in Methods. The algorithm was adopted from Ref. 
[21] (Xu et al) and optimized for speed as depicted above. 
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Fig. 8. Comparing the quality assessment measures (MSE, PSN and SSIMs) between Nuance 
unmixing protocol [11] and fast unmixing protocol adapted from [21]. Sample 1. (B). Sample 
2. 
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Fig. 9. Left: Histogram distribution of Accuracies of all 14 studies used in this report. Right. 
Boxplot results for all 14 studies obtained using the fast unmixing protocol to reveal the 
distribution of Accuracies in the 2, 3 and 4 band cases. All possible combinations were tested 
thru the fast unmixing protocol to reveal lesion using only 2- or 3- or 4-band cases. 
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