
Dynamics of Scroll Waves of Excitation in a Mathematical Model of
 
Ischaemic Border Zone
 

Irina V Biktasheva1, Narine A Sarvazyan2, Vadim N Biktashev3 

1 University of Liverpool, Liverpool, UK
 
2 The George Washington University, Washington DC, USA
 

3 University of Exeter, Exeter, UK
 

Abstract 

Abnormal electrical activity from ischaemic boundary is 
one of major causes of ischemia-reperfusion arrhythmias, 
though exact mechanisms remain poorly understood. We 
used asymptotic theory of spiral waves drift based on re­
sponse functions to compute specific forces acting on scroll 
waves in the vicinity of ischaemic border. The model in­
cluded macroscopic gradients of cell-to-cell coupling and 
of cell excitability, and microscopic heterogeneity of indi­
vidual cells, with Beeler-Reuter-Pumir explicit, albeit sim­
plified, description of ionic currents. The quantitative in­
terplay of specific forces explained formation of vortices, 
their drift together with recovering boundary, transient 
pinning to local inhomogeneities followed by penetration 
into bulk of healthy tissue. Likelihood of vortex escape 
into better coupled tissue depended on the border zone re­
covery speed. Direct numerical simulations confirmed the 
theoretical predictions for evolution of vortices. 

1. Introduction 

Reperfusion arrhythmias are associated with cardiac tis­
sue recovery from acute ischemia, which can be more dan­
gerous than ischemia itself, often leading to ventricular fib­
rillation and sudden cardiac death [1]. In a thin layer of 
cells sandwiched between intact healthy tissue and recov­
ering ischaemic areas, Figure 1, rotating excitation waves 
can occur on a much smaller spatial scale compared to 
classical cardiac reentry [2]. Myocytes within such lay­
ers can become spontaneously active due to calcium over­
load and/or local noradrenaline release. The impact of 
intrinsic myocyte heterogeneity on network behaviour is 
enhanced by decrease in electrical coupling between the 
cells. It gets even more complicated as the physicochem­
ical factors that create the boundary move in space due to 
dynamic nature of reperfusion [3]. The speed of retracting 
ischaemic border can vary in a rather wide range depend­
ing on reperfusion type, as blood flow can recover within 

Figure 1. Excitation dynamics on a microscopic spatial 
scale. 

Figure 2. Distribution of diffusivity D and excitability α 
across the border zone moving downwards. 

seconds (resolved coronary spasm, spontaneous dislodg­
ing of thrombi, angioplasty) or within minutes, if changes 
are due to gradual accumulation of metabolites or pharma­
cological interventions. 

We used the asymptotic theory of spiral waves’ drift and 
their response functions [4, 5] to obtain quantitative pre­
dictions for specific forces and corresponding drift veloci­
ties caused by recovering ischaemic border zone. The drift 
velocities explained experimental observation of rotating 
waves dragged together with the moving border zone, elu­
cidated mechanisms of “pinning” to clusters of cells of 
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Figure 3. Spiral wave solution U and its translational response function W, α = 0.115. White corresponds to a value A 
and black to −A chosen individually for each plot. The grey periphery of W plots corresponds to 0. 

either elevated or suppressed excitability, as well as the 
mechanism by which pinning can give way to further drift. 
We confirmed the theoretical predictions by direct numer­
ical simulations. 

2. Methods 

We modelled tissue recovering from acute ischaemia 
as a three-layered slab, Figure 2, of heterogeneous cells 
with modified Beeler-Reuter-Pumir [2, 6] (BRP) kinetics 
and moving vertical gradients of average cell excitability 
α(z, t) > 0 and of cell-to-cell coupling strength D(z, t), 

V̇ = −(1/Cm)(iK1 + ix1 + iNa + is) + Iext, 

iK1 = gK1 × 

4 e0.04(V+85) − 1
[ 

0.2(V + 23) 
]

+ , 
e0.08(V+53) + e0.04(V+53) 1 − e−0.04(V+23) 

gK1 = 0.35(0.3 − α(x, y, z, t)),
 

Iext = \ (D(z, t)\V ) . (1)
 

Permeabilities of main currents were reduced vs the origi­
nal Beeler-Reuter model: fast inward gNa to 60% (2.4 vs 
4), slow inward gs to 50% (0.045 vs 0.09). In the inner 
layer, outward potassium rectifier gK1 ; was supressed to 
30% of the standard value (α = 0). At higher values of α, 
in upper layers, cells became automatic [6], Heterogeneity 
of excitability was described as 

α(x, y, z, t) = α(z, t) (1 + δαη(x, y, z)), 

η(x, y, z) was Gaussian uncorrelated random variable with 
unit dispersion, δα was the intensity of heterogeneity. 
Space-time variations of D and α were defined as 

⎧
Dmin, z ≤ z1,⎨ 

z2−z z−z1
D(z, t) = z2−z1 , z1 ≤ z ≤ z2,Dmin 

z2−z1 Dmax⎩ 
Dmax, z ≥ z2, 

1 
( (

z − z1 

))

α(z, t) = 1 + tanh αmax.2 w 

z1(t) = z1,0 − ct and z2(t) = z2,0 − ct were limits of 
the steepest part of coupling gradient, w = 3 × 30μm 
was border zone width. In the inner layer, low excitability 
and weak coupling produced quiescent state with no wave 
propagation possible. In the outer layer, high excitability 
and strong coupling resulted in quiescent state capable to 
support wave propagation. In the middle layer, high ex­
citability and weak coupling generated spontaneous frag­
mented waves. The layers moved downwards due wash­
out of agents affecting the relevant tissue properties. 

In absence of perturbation, e.g. heterogeneities and gra­
dients, the asymptotic theory [4, 5] assumes stationary ro­
tating spiral wave solution to (1), 

u(Rr, t) = U(ρ(Rr − RR), ϑ(Rr − RR) + ωt − Φ), (2) 

with angular velocity ω, fiducial phase Φ; ρ(Rr − RR), ϑ(Rr − 
RR) are polar coordinates centered at rotation center RR = 
(X, Z). BRP model has stationary spirals for all α consid­
ered. 

Perturbed spiral preserves the pattern and slowly drifts 
its core location and fiducial phase. It behaves as a lo­
calised object, only sensitive to perturbations affecting the 
core, due to localization of its response functions (RFs) in 
the vicinity of the core. The RFs are calculated numeri­
cally [5] together with the spiral wave solution (2). 

Drift velocity is proportional to “specific force” γ caused 
by a perturbation h, 

φ¢+π ) dξ 
Ṙ ≈ Eγ = E e −iξ 

I
W , h̃(U; ρ, θ, ξ) , (3)

2π 
φ−π 

where E « 1, R = X +i Z; (∙ , ∙) stands for scalar product 
in functional space; h̃ is the perturbation in the RR-centered 
corotating frame of reference (ρ, θ), θ = ϑ + ωt − Φ(t) 
and φ = ωt − Φ(t). The kernel W(ρ, θ) ∈ C in (3) is the 
(translational) response function of the unperturbed spiral 
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Figure 4. D = 10−2 cm2/s. (a) Specific force γκ. (b) 
Specific force γα. Red solid lines: real parts, the longitu­
dinal components. Dashed blue lines: imaginary parts, the 
lateral components. 

= − R−rcFigure 5. Specific force γi |R−rc| 
F (|R − rc|). De­

pendence of (a) radial and (b) tangential components on 
the distance between spiral rotation centre R and inho­
mogeneity centre rc, at selected values of background ex­
citability α0. 

wave solution (2). The overall drift velocity is given by 
superposition principle as a sum of specific forces, 

˙
�

R ≈ γjEj , 
j 

here Ej is magnitude of j-th perturbation, and γj is the 
specific force produced by a unit perturbation of that sort. 

In our model, the specific forces were: γκ caused by 
the filament curvature, γi and γα caused by localised inho­
mogeneities and smooth gradient of parameter α respec­
tively, and γD caused by gradient of diffusivity. Note 
that γD = −γκ [2, 7]. The real component Re (γκ), 
also called filament tension b2, has special importance. If 
Re (γκ) = b2 > 0, a ring filament collapses, if b2 < 0, fil­
ament grows leading to fibrillation like “turbulence” [8,9]. 
Re (γα) is the component γα along gradient of α and is 
positive if the drift is towards higher values of α. Radial 
component Re (F ) of the specific force γi is positive if the 
spiral moves towards the inhomogeneity centre [5, 10] 

Figure 6. (a) Temporary pinning to high-α cluster. 
The colour background shows distribution of η(x, y), 
smoothened by sliding averaging, (greenish) dark corre­
sponds to high α and (blue) light to low α. (b) Drift around 
a repelling inhomogeneity (green dots). α = 0.13 in the 
bulk of the medium and α = 0.15 within inhomogeneity. 
Red solid line is the tip trajectory. Arrows show predicted 
velocity field (3). Small blue open circles show predicted 
instant centres of rotation corresponding to one rotation pe­
riod. (c) Two repelling inhomogeneities of the same kind 
as in (b) can stop the drift altogether. 

3. Results 

Figure 3 shows density plots for a spiral wave and its 
translational response function in BRP model. Based on 
the RFs, Figure 4(a) shows theoretical prediction for the 
filament tension b2 = Re (γκ) changing sign in the con­
sidered interval of parameter α. It also determines the 
drift component along gradient of diffusivity Re (γD) = 
−Re (γκ) = −b2, and Im (γD) = −Im (γκ) = −c3 

across it. So, at higher values of α, negative Re (γD) must 
drag spirals towards poor coupled regions, while at lower 
α, positive Re (γD) must push spirals towards better cou­
pled regions. Figure 4(b) shows theoretical prediction for 
drift due to smooth gradient of excitability α. Re (γα) is 
negative in the whole range of α0, so spirals should drift 
towards lower excitability, which agrees with the general 
rule noted e.g. in [11, 12]. 

Figure 5 shows theoretical prediction for spiral interac­
tion with a point-like heterogeneity in parameter α. Here, 
Re (F (ρ)) < 0 for all α and all distances ρ between 
the spiral and inhomogeneity, so spirals are attracted to 
spots of lowered excitability, Ei < 0, and vice versa. 
However, simulations showed pinning even to repelling 
spots [3] (Figure 6(a)). This be either temporary pinning 
(Figure 6(b)), or permanent pinning to a certain lay-out of 
repelling heterogeneities (Figure 6(c)). 

Figure 7 shows two 3D simulations. At α = 0.105, neg­
ative filament tension (cf Figure 4(a)) and repelling gradi­
ent of diffusivity allowed scrolls to penetrate into the bulk 
of the tissue, where they persisted after the ischaemic bor­
der zone had disappeared. At α = 0.115, positive filament 
tension in the upper layer did not allow scrolls to grow, and 
the attractive gradient of diffusivity dragged them together 
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Figure 7. Vortex formation by moving border zone. 
Dmax = 10−3 cm2/s, δα = 0.5, box size 120 × 90 × 180 
cells, border speed c = 3 cell/s. (a) αmax = 0.105; (b) 
αmax = 0.115. 

with the moving border zone. Continuation of the simula­
tion Figure 7(b) led to complete elimination of all activity. 
All that was in full agreement with what could be expected 
from the asymptotic theory predictions. 

4. Discussion 

In this study, we considered the asymptotic theory’s 
quantitative predictions for the forces causing drift of car­
diac re-entry in the vicinity of ischaemic border zone. The 
predictions allowed to tell apart and highlight different 
mechanisms of arrythmogenesis by the ischaemic boder 
zone in three-dimentiontional settings. The direct numeri­
cal simulations with deliberately arranged conditions con­
firmed the theoretical predictions for the drift, and make 
predictions, not available from tissue culture experiments. 

The drift and pinning of spirals are due to combination 
of the gradients of coupling and excitability, and micro­
scopic heterogeneity of excitability. Pinning of spirals to 
heterogeneity, even if temporary, helps them to escape into 
the bulk of the tissue and produce macro-reentry, despite 
the smooth gradients. In three dimensions, the filament 
tension’s effects enhance arrhythmogeneity if excitability 
in the bulk is low, or suppress it if the excitability is high. 

In vivo, the above considered scenarios will be affected 
by multiple additional factors (excitability kinetics, pres­
ence of highly excitable Purkinje fibers, macroscopic my­
ofiber orientation, coronary vessels, fibrous or fat deposits, 
transmural differences in myocytes metabolic activity and 
their sensitivity to ischaemia). Yet, with all its limitations, 
this study represents one of the first attempts to theoreti­
cally explore a very complex set of highly arrhythmogenic 
conditions that can occur on the boundary of the recover­
ing ischaemic tissue. 
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